

Next Generation Neuroscience Simulation Platforms Challenges and Chances from an Engineering Perspective -

Tobias G. Noll

Special thanks to: Georgia Psychou, Arne Heittmann, Markus Diesmann, and Tom Tetzlaff !

Outline

- □ Introduction
- Neuronal Network Components and Models
- **Exemplary Large-Scale Networks**
- **D** Future Requirements
- **Simulation Principles**
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **G** State-of-the Art
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

The Human Brain – Facts and Figures

Fan In:

 $10^{9}/10^{5} = 10^{4}$ Synapses / Neuron

Fan Out:

10⁴ Projection Targets / Neuron

Local Connectivity:

 $10^{4}/10^{5} = 0.1$; i.e. each neuron projects to / receives from 10% of all others **Long-Term Goals**

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- Conclusion

Neuron

Very much simplified

Lapique's Leaky Integrate-and-Fire Model (1907)

LOUIS LAPICQUE 1866-1952

O Kirchhoff Nodal Analysis

$$C_{m} \cdot \frac{\mathrm{d}V_{m}(t)}{\mathrm{d}t} = -\frac{V_{m}(t) - E_{rest}}{R_{m}} + I_{ext}(t)$$

$$\frac{\mathrm{d}V_{m}(t)}{\mathrm{d}t} = \frac{1}{\underbrace{C_{m} \cdot R_{m}}_{\tau_{m}}} \cdot \left[E_{rest} - V_{m}(t)\right] + \frac{1}{R_{m}} \cdot I_{ext}(t)$$

iff $V_m(t) \ge V_{th}$: Spike and $V_m(t) = E_{rest}$

Purely phenomenological model

Point Neuron Models: The Hodgkin-Huxley Model (1952)

The Nobel Prize in Physiology or Medicine 1963

Andrew Fielding Huxley

Derived from experiments with the giant squid axon

$$C \cdot \frac{\mathrm{d}}{\mathrm{d}t} V(t) = -\sum_{k} I_{k}(t) + I(t)$$

$$\sum_{k} I_{k}(t) = g_{Na} \cdot m^{3} \cdot h \cdot [V(t) - E_{Na}] + g_{K} \cdot n^{4} \cdot [V(t) - E_{K}] + g_{L} \cdot [V(t) - E_{L}]$$

$$\frac{\mathrm{d}}{\mathrm{d}t} m(t) = \alpha_{m}(V) \cdot [1 - m(t)] - \beta_{m}(V) \cdot m(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} n(t) = \alpha_{n}(V) \cdot [1 - n(t)] - \beta_{n}(V) \cdot n(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} h(t) = \alpha_{h}(V) \cdot [1 - h(t)] - \beta_{h}(V) \cdot h(t)$$

$$\alpha_{m}(V) = \frac{2.5 - 0.1 \cdot V(t) / \mathrm{mV}}{\left[\exp\left(2.5 - 0.1 \cdot V(t) / \mathrm{mV}\right) - 1\right]}$$

$$\beta_{m}(V) = 4 \cdot \exp\left(-V(t) / 18 \mathrm{mV}\right)$$

Benchmarking Point Neuron Models [Izhikevich, 2004]

tonic spiking	phasic spiking	tonic bursting							ph	asic	burs	ting												
	Models	Ministra	Denvesi		nearit ing st	in the second	sting	ad mo		uenci al	adat citad	e late	a new mest	inator	ollator	ons	pine pine	jurst shold	variation	R acc	omme	dation	indices	A SOLUCE H OF
mixed mode		<i>\\$</i> .	<u>.</u>	<u>Ŷ</u>		<u>Ŷ</u>	<u>(</u>	<u>~</u>	<u>.</u>	0.	<u>~</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~	·//·	~		<u>%</u> .	<u> </u>		••		<u>~</u>		
	integrate-and-fire	-	+	-	-	-	-	-	+	-	-	-	-	+	-	-	-	-	-	-	-	-	-	5
	integrate-and-fire with adapt.	-	+	-	-	-	-	+	+	-	-	-	-	+	-	-	-	-	+	-	-	-	-	10
	integrate-and-fire-or-burst	-	+	+		+	-	+	+	-	-	-	-	+	+	+	-	+	+	-	-	-		13
	resonate-and-fire	-	+	+	-	-	-	-	+	+	-	+	+	+	+	-	-	+	+	+	-	-	+	10
spike latency	quadratic integrate-and-fire	-	+	-	-	-	-	-	+	-	+	-	-	+	-	-	+	+	-	-	-	-	-	7
	Izhikevich (2003)	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	13
	FitzHugh-Nagumo	-	+	+	-		-	-	+	-	+	+	+	-	+	-	+	+	-	+	+	-	-	72
	Hindmarsh-Rose	-	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	120
rebound spike	Morris-Lecar	+	+	+	-		-	-	+	+	+	+	+	+	+		+	+	-	+	+	-	-	600
	Wilson	-	+	+	+			+	+	+	+	+	+	+	+	+	+		+	+				180
	Hodgkin-Huxley	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	1200
-u <u>-</u>	u _				ш			_	л		л													

Benchmarking Point Neuron Models [Izhikevich, 2004]

Computational power to simulate One Neuron in Biological Real Time

Today's Zoo of Point Neuron Models

Neuron

Axons

Gray Matter: Non-myelinated Axons for short-range interconnect

Axon model in large-scale simulation: Axonal propagation delay t_{axon}

Axons

White Matter: Myelin-Coated Axons for long-range interconnect

Neuron

Chemical Synapses

Electrical Synapses

Chemical Synapse Models

Conductance-Based ("COBA") Models

Delta Function (Dirac pulse) Impulse Response: $g_{syn}(t) = \hat{g}_{syn} \cdot \delta(t-t_0)$

ODE:

Single Exponential (Instantaneous rise)

Impulse Response: $g_{syn}(t) = \hat{g}_{syn} \cdot \exp\left[-(t-t_0)/\tau_{syn}\right] \cdot \sigma(t-t_0)$

ODE:

$$\tau_{syn} \cdot \frac{\mathrm{d}\,g_{syn}(t)}{\mathrm{d}\,t} = -g_{syn}(t) + \hat{g}_{syn} \cdot \delta(t - t_0)$$

Alpha Function

Impulse Response: $g_{syn}(t) = \hat{g}_{syn} \cdot (t - t_0) / \tau_{syn} \cdot \exp[1 - (t - t_0) / \tau_{syn}] \cdot \sigma(t - t_0)$

ODE:

$$\frac{\mathrm{d}\,g(t)}{\mathrm{d}\,t} = -\frac{g(t)}{\tau_{syn}} + h(t)$$
$$\frac{\mathrm{d}\,h(t)}{\mathrm{d}\,t} = -\frac{h(t)}{\tau_{syn}} + h_o(t) \cdot \delta(t - t_0)$$

Beta Function (Difference of two exponentials) Impulse Response: $g_{syn}(t) = \hat{g}_{syn} \cdot f \cdot \left\{ \exp\left[-(t-t_0)/\tau_{decay}\right] - \exp\left[-(t-t_0)/\tau_{rise}\right] \right\} \cdot \sigma(t-t_0)$

ODEs:

$$\frac{\mathrm{d}\,g(t)}{\mathrm{d}\,t} = -\frac{g(t)}{\tau_{decay}} + h(t)$$

$$\frac{\mathrm{d}\,h(t)}{\mathrm{d}\,t} = -\frac{h(t)}{\tau_{rise}} + h_o(t) \cdot \delta(t - t_0)$$

[A. Roth, M.C.W. van Rossum]

Chemical Synapse Models

Conductance-Based ("COBA") Single Exponential Synapse to LIF Neuron

$$C_{m} \cdot \frac{\mathrm{d}V_{m}(t)}{\mathrm{d}t} = -V_{m}(t) / R_{m} + g_{syn}(t) \cdot \left[E_{syn} - V_{m}(t)\right]$$

$$\tau_{syn} \cdot \frac{\mathrm{d}g_{syn}(t)}{\mathrm{d}t} = -g_{syn}(t) + \hat{g}_{syn} \cdot \delta(t - t_{0})$$

- **O** Bad news: Non-linear ODE system
- O Good news: One-way coupled ODE system

Current-Based ("CUBA") Single Exponential Synapse to LIF Neuron

Approx.:
$$V_m(t) = \text{const. in } [E_{syn} - V_m(t)] =: \tilde{E}_{syn}$$

$$C_{m} \cdot \frac{\mathrm{d}V_{m}(t)}{\mathrm{d}t} = -V_{m}(t) / R_{m} + g_{syn}(t) \cdot \tilde{E}_{syn}$$
$$\tau_{syn} \cdot \frac{\mathrm{d}g_{syn}(t)}{\mathrm{d}t} = -g_{syn}(t) + \hat{g}_{syn} \cdot \delta(t - t_{0})$$

O Good news: Linear, one-way coupled ODE system

Synapse Processing

O Giant effort to process 10,000 S/N

Synapse Processing

• O One "lumped synapse" for group of synapses with same dynamics, i.e.

• Works for current- and conductance-based synapses

• At least two lumped synapses, one excitatory and one inhibitory

Neuron

Compartmental Dendrite Models

Brain is 10 times more active than previously measured, UCLA researchers find

Shelley Halpain/UC San Diego

Science

RESEARCH ARTICLES

Cite as: J. J. Moore *et al.*, *Science* 10.1126/science.aaj1497 (2017).

Dynamics of cortical dendritic membrane potential and spikes in freely behaving rats

Jason J. Moore,^{1,2*} Pascal M. Ravassard,^{1,3} David Ho,^{1,2} Lavanya Acharya,^{1,4} Ashley L. Kees,^{1,2} Cliff Vuong,^{1,3} Mayank R. Mehta^{1,2,3,5*}

¹W. M. Keck Center for Neurophysics, Integrative Center for Learning and Memory, and Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA. ²Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, CA, USA. ³Department of Physics and Astronomy, University of California at Los Angeles, CA, USA. ⁴Biomedical Engineering Interdepartments Program, University of California at Los Angeles, CA, USA. ⁴Department of Physics and Astronomy, University of California at Los Angeles, CA, USA. ⁴Biomedical Engineering Interdepartments Program, University of California at Los Angeles, CA, USA. ⁴Departments of Neurology and Neurobiology, University of California at Los Angeles, Los Angeles, Los Angeles, CA, USA.

Compartmental Dendrite Models

Mathematica Model:

System of PDEs

 $\frac{1}{2\pi a}\frac{\partial}{\partial x}\left(\frac{\pi a^2}{R_a}\frac{\partial V}{\partial x}\right) = C_m \frac{\partial V}{\partial t} + I_{\rm HH}$

System of ODEs + cable equations (solutions of Telegraph's equation)

System of ODEs

Point neuron ODE(s), only

Compartmental Dendrite Models: Examples

J. Physiol. (1984), **348**, pp. 89–113 With 9 text-figures Printed in Great Britain

COMPARTMENTAL MODELS OF ELECTROTONIC STRUCTURE AND SYNAPTIC INTEGRATION IN AN IDENTIFIED NEURONE

BY DONALD H. EDWARDS, JR* AND BRIAN MULLONEY From the Department of Zoology, University of California, Davis, CA 95616, U.S.A.

[Izhikevich, 2007]

89

Compartmental Dendrite Models

KNA: Coupled ODE System

Conductance Matrix (essentially tri-diagonal):

O Good news: Sparse matrix

- **O** Bad news: Large, fully coupled system
- O Even more bad: "Stiff" ODE system

Issues with Stiff ODE Systems

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**
Neuron Populations and Balanced Networks

Source: Tony Mosconi, Victoria Graham: Neuroscience for Rehabilitation Copyright @ McGraw-Hill Education. All rig 10786 • The Journal of Neuroscience, November 16, 2005 • 25(46):10786-10795

Signal Propagation and Logic Gating in Networks of Integrate-and-Fire Neurons

Tim P. Vogels and L. F. Abbott

Volen Center for Complex Systems and Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110

The Microcircuit Model

Neuron Populations and Balanced Networks

Cerebral Cortex March 2014;24:785–806 doi:10.1093/cercor/bhs358 Advance Access publication December 2, 2012

The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model

Tobias C. Potjans^{1,2,3} and Markus Diesmann^{1,2,4,5}

Local Connectivity

Microcircuit (≈77,000 neurons, uniform connectivity)

Local Lateral Connectivity

Multi-Area Models

Hybrid hierarchical network t.b.d.

Full-density multi-scale account of structure and dynamics of macaque visual cortex

Hybrid hierarchical network t.b.d.

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks

D Future Requirements

- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- Conclusion

The Spatio-Temporal Multiscale Brain

Future Requirements in Neuroscience Simulation

- **O** Brain-Area Network Complexity (~100 Mio. Neurons)
- **O** Significant Speed-Up w.r.t. BRT (Plasticity, Learning, Development)
- **O** Reproducibility and Accuracy
- **O** Taylored Flexibility (Models: "Make the common case fast")
- **O** Reliability
- O Legacy
- O Silicon Area / Volume
- **O** Power Dissipation / Energy Consumption

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **Simulation Principles**
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

Basic Principles of Digital Spiking Network Simulation

- O Input to networks: Random Poisson spike trains
- O Output from simulation: Recorded spike patterns
- O Output: 1st-order statistics, like avg. Spike rate, ISI distribution, CV, ... 2nd-order statistics, like correlation and decorrelation
- O Learning: STDP seldom; no attempt to perform functional inference, yet

Coarse Simulation Flow (w/o. Learning) Time-Driven

ODE:
$$y'(t) = \frac{d}{dt} y(t) = f[y(t)] = a \cdot y(t) + x(t)$$
 IVP: $y(t_0 = 0) = y_0$

N.B.:
$$\frac{d}{dt}y(t) = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t} = \underbrace{a \cdot y(t) + x(t)}_{,,,slope''}$$

Discretisation in time: $\Delta t = h = \text{const.}$ $x_k \coloneqq x(k \cdot h)$, $y_k \coloneqq y(k \cdot h)$; k = 0, 1, 2, ...

Recurrence equation: $y_{k+1} = y_k + \Delta y_k = y_k + h \cdot "slope"$

ODE:
$$y'(t) = \frac{d}{dt} y(t) = f[y(t)] = a \cdot y(t) + x(t)$$
 IVP: $y(t_0 = 0) = y_0$

N.B.:
$$\frac{d}{dt}y(t) = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t} = \underbrace{a \cdot y(t) + x(t)}_{,,,slope''}$$

Discretisation in time: $\Delta t = h = \text{const.}$ $x_k \coloneqq x(k \cdot h)$, $y_k \coloneqq y(k \cdot h)$; k = 0, 1, 2, ...**Recurrence equation:** $y_{k+1} = y_k + \Delta y_k = y_k + h \cdot "slope"$

Forward Euler Method: Use slope at t_k

Use "slope" at
$$t_k$$

 $y_1 = y_0 + \Delta y_0 = y_0 + h \cdot (a \cdot y_0 + x_0)$
 $y_{k+1} = y_k + h \cdot (a \cdot y_k + x_k)$
"Explicit Method"

 $y_{k+1} = (1+h \cdot a) \cdot y_k + h \cdot x_k$

ODE:
$$y'(t) = \frac{d}{dt} y(t) = f[y(t)] = a \cdot y(t) + x(t)$$
 IVP: $y(t_0 = 0) = y_0$

N.B.:
$$\frac{\mathrm{d}}{\mathrm{d}t} y(t) = \lim_{\Delta t \to 0} \frac{y(t + \Delta t) - y(t)}{\Delta t} = \underbrace{a \cdot y(t) + x(t)}_{,,,slope''}$$

Discretisation in time: $\Delta t = h = \text{const.}$ $x_k \coloneqq x(k \cdot h)$, $y_k \coloneqq y(k \cdot h)$; k = 0, 1, 2, ...**Recurrence equation:** $y_{k+1} = y_k + \Delta y_k = y_k + h \cdot "slope"$

Forward Euler Method: Use slope at t_k

Use "slope" at
$$t_k$$

 $y_1 = y_0 + \Delta y_0 = y_0 + h \cdot (a \cdot y_0 + x_0)$
 $y_{k+1} = y_k + h \cdot (a \cdot y_k + x_k)$
"Explicit Method"
 $y_{k+1} = (1 + h \cdot a) \cdot y_k + h \cdot x_k$

Backward Euler Method: Use slope at t_{k+1}

Use "slope" at
$$t_{k+1}$$

 $y_1 = y_0 + \Delta y_1 = y_0 + h \cdot (a \cdot y_1 + x_1)$
 $y_{k+1} \neq y_k + h \cdot (a \cdot y_{k+1} + x_{k+1})$
"Implicit Method"
 $y_{k+1} = \frac{1}{(1-h \cdot a)} \cdot y_k + h \cdot x_{k+1}$

Difference equations of 1st-order IIR filters ... just different coefficients

Forward Euler Method

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

10⁰

 10^{-2}

10⁻⁴

10⁻⁶

10-8

10^{-10 L}

10⁰

Global Error at t=1

0

> 0.5

4 Contraction of the second Olhjslope double precison single precision single with Kahan Compensation 10¹⁰ 10^{2} 10⁶ 10⁸ 10^{4} N ~ 1/h

Implicit Trapezoidal Rule: Use slope avg. slope at t_k and t_{k+1}

$$y_{k+1} = \frac{(1+h/2 \cdot a)}{(1-h/2 \cdot a)} \cdot y_k + h/2 \cdot (x_k + x_{k+1})$$

Difference equations of 2nd-order IIR filter In DSP filter design: "*Bilinear Transform*"

O Methods with even higher orders exist ...

More Sophisticated Numerical ODE Solvers

O Linear Multistep, Runge-Kutta Multistage, ...

O And many, many more ...

O All need to compromise operation count per step vs. step size and are applicable to

- O ... linear and non-linear ODEs
- O ... systems of coupled ODEs: Requires solution of linear / non-linear system of algebraic equations
- O But for the linear case, there's a "champion" ...

Exact Exponential Integration – for linear ODEs and coupled systems ONLY !

$$y'(t) = a \cdot y(t) + x(t) \qquad s \cdot Y(s) = a \cdot Y(s) + X(s)$$

Impulse response, i.e. $x(t) = \delta(t) \qquad h(t) = \exp(a \cdot t) \qquad H(s) = \frac{Y(s)}{X(s)} = \frac{1}{s-a}$

Analytical solution
$$y(t) = y_0 \cdot \exp(a \cdot t) + x(t) * h(t) = y_0 \cdot \exp(a \cdot t) + \int_{s=0}^{t} x(t) \cdot \exp[a \cdot (t-s)] \cdot ds$$

Recurrence equation: Consider each simulation step as an IVP

$$y_{k+1} = y_k \cdot \exp(a \cdot h) + \int_{s=0}^{h} x(k \cdot h + s) \cdot \exp[a \cdot [(h-s)]] ds$$

O 1st order IIR; DSP filter design "Impulse Invariant Mapping"

O If convolution integral can be solved analytically : Exact – i.e., zero error

- O N.B.: Ultimate input to neuron-synapse models are Dirac-pulse trains i.e., the integral becomes trivial ...
- O Can be easily extended to linear ode systems: Apply matrix calculus and definition of "matrix exponential":

$$\exp(a) = 1 + \frac{1}{1!} \cdot a + \frac{1}{2!} \cdot a^2 + \frac{1}{3!} \cdot a^3 + \dots \qquad \Longrightarrow \qquad \exp([A]) = 1 + \frac{[A]}{1!} + \frac{[A]^2}{2!} \cdot \frac{[A]^3}{3!} \cdot \dots$$

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **Simulation Principles**
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

Communication Scheme

Source Address Event Representation (AER)

O Every neuron needs address translation: source neuron ID \rightarrow target synapse ID

O Packet layout:

 source neuron ID
 optional payload: spike time

 - \[log_2(neuron count) \] --- typically 40bit

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER

□ State-of-the Art

- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

Neuroscience-Simulation Tools: Software

There's an algorithm to simulate our brains. Too bad no computer can run it

by TRISTAN GREENE - Mar 22, 2018 in ARTIFICIAL INTELLIGENCE

ORIGINAL RESEARCH published: 16 February 2018 doi: 10.3389/fninf.2018.00002

Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers

Jakob Jordan^{1*}, Tammo Ippen^{1,2}, Moritz Helias^{1,3}, Itaru Kitayama⁴, Mitsuhisa Sato⁴, Jun Igarashi⁵, Markus Diesmann^{1,3,6} and Susanne Kunkel^{7,8}

¹ Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, ² Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, ⁹ Department of Physics, Faculty 1, RWTH Aachen University, Aachen, Germany, ⁴ Advanced Institute for Computational Science, RIKEN, Kobe, Japan, ⁶ Computational Engineering Applications Unit, RIKEN, Wako, Japan, ⁶ Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany, ⁷ Department of Computational Science and Technology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden, ⁸ Simulation Laboratory Neuroscience – Bernstein Facility for Simulation and Database Technology, Jülich Research Centre, Jülich, Germany Scientists just created an algorithm capable of performing a complete human brain simulation. Now we just have to wait for someone to build a computer powerful enough to run it.

The team, comprised of researchers from Germany, Japan, Norway, and Sweden, recently published a <u>white paper</u> detailing the new algorithm, which connects virtual neurons with nodes. It's designed to simulate the brain's one billion connections between individual neurons and synapses.

A human brain's neuronal activity is incredibly complex and simulating it at a 1:1 ratio is impossible with current technology. Achieving just a 10 percent simulation rate maxes out the supercomputers that such limited simulations have been run on in the past. This is because the act of connecting neurons — crucial for every activity that happens in the brain — requires more power than today's hardware has. According to a *Kurzweil Network* article:

That process requires one bit of information per processor for every neuron in the whole network. For a network of one billion neurons, a large part of the memory in each node is consumed by this single bit of information per neuron. Of course, the amount of computer memory required per processor for these extra bits per neuron increases with the size of the neuronal network. To go beyond the 1 percent and simulate the entire human brain would require the memory available to each processor to be 100 times larger than in today's supercomputers.

The new algorithm won't allow scientists to run those simulations now, but in theory it has "extreme scalability" that will work with future '<u>exascale</u>' hardware. It was built using open source simulation software called neural simulation tool (NEST), which is widely used in the neuroscientific community.

By scaling the algorithm with future exascale supercomputers, researchers hope to reach 100 percent simulation. This would represent a watershed moment in several fields of scientific endeavor.

Such a simulation could change the course of research concerning brain disorders ranging from Parkinson's disease to multiple sclerosis. And the implications for artificial intelligence research and neural network design could involve an entirely new perspective on deep learning.

Scientists have worked for decades to simulate the human brain using computers and math. This algorithm is a bridge between what we knew about our minds yesterday, and what we'll know tomorrow.

Human Brain Project Systems

BrainScaleS (Univ. Heidelberg)

Analog Emulation / Digital Communication "Physical-Model Emulator"

x 1,000 ... 10,000 accelerated 4M Neurons / 1B Synapses Adaptive Exponential IF Wafer Scale / Ethernet 180-nm CMOS

4 Million Neurons 1 Billion Synapses

SpiNNaker (Univ. Manchester)

Fully Digital & Programmable "Many-DSP-Core"

"Real-Time Simulator" 920M Neurons / 460B Synapses 1 Mio. ARM Cores, 16 bit 2D-Mesh Toroid Multicast 130-nm CMOS

Wafer-Scale Integration of Analog Neural Networks

Johannes Schemmel, Johannes Fieres and Karlheinz Meier

2008 International Joint Conference on Neural Networks (IJCNN 2008)

Understanding the Interconnection Network of SpiNNaker

Javier Navaridas†, Mikel Luján*, Jose Miguel-Alonso†, Luis A. Plana*, Steve Furber* *ICS'09*, June 8–12, 2009, York Town Heights, New York, USA

Communication: Packet switched with propriatary asynchronous interconnect

Distance 256 x 256 Toroid

$$D = \frac{n}{2} + \left\lfloor \frac{n}{6} \right\rfloor = \left\lfloor \frac{2 \cdot n}{3} \right\rfloor = 170 \text{ hops}$$

Latency: chip2chip 0.2 us/hop ⇒ 34 us (on board) Board2board (SATA cable) 0.5 us / hop

Neuroscience Simulation Platforms HBP, 2017

(theoretical capabilities)

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

Lin et al. (2003), J. Neurophys., 90, 4

Imaging & Microscopy (http://www.imaging-git.com

- **Size of neurons: 10-100um**
 - Size of modern transistor: 10-100nm
 - in 2d, 1 million transistors fit into 1 neuron
 - Number of neurons in cortex: about 10¹⁰
 - Number of transistors in modern microprocessor (Intel Broadwell-E5): about 10¹⁰
 - Can we just scale this technology up?

O So, why is it so difficult ?

Mapping a Cube Model to a 2D Sheet of Neurons

Microcircuit (1 Microliter of Cortex): Axonal diameter $\approx 0.3 \ \mu\text{m}$ $a_{3\text{D}} = 1 \ \text{mm}$ $N = 10^5 \ \text{Neurons} \Rightarrow n_V = 10^5 \ \text{mm}^{-3} \ \text{Neuron} \ \text{density}$ $l_a = 40 \ \text{mm} \ \text{axonal} \ \text{length} \ \text{per neuron}$ Aggregated total axonal length $L_a = l_a \cdot N = 4 \cdot 10^3 \ \text{m}$

eric Cube:

[Dmitri B. Chklovskii,2004]

Generic Cube:

$$V = a_{3D}^3$$

 $N = a_{3D}^3 \cdot n_V$
 $L = a_{3D}^3 \cdot n_V$

$$\boldsymbol{L}_{\boldsymbol{a},3\boldsymbol{D}} = \boldsymbol{l}_{\boldsymbol{a}} \cdot \boldsymbol{a}_{3\boldsymbol{D}}^3 \cdot \boldsymbol{n}_{\boldsymbol{V}} = \boldsymbol{a}_{3\boldsymbol{D}}^3 \cdot 4 \cdot 10^6 \text{ mm}^{-2}$$

2-Dimensional Sheet of Neurons:

$$a_{2D} = a_{3D} \cdot \sqrt[6]{N} = a_{3D} \cdot \sqrt[6]{a_{3D}^3} \cdot n_V = a_{3D}^{3/2} \cdot \sqrt[6]{n_V}$$
$$\sqrt[6]{n_V} = \sqrt[6]{10^5} \sqrt{1/\text{mm}} = 6.813 \text{ mm}^{-1/2}$$
$$a_{2D} = a_{3D}^{3/2} \cdot 6.813 \text{ mm}^{-1/2}$$

2D- vs 3D-Interconnect Wiring Lengths

 $l_{a,avg,3D} \sim a_{3D}$

~3D

$$l_{a,avg,2D} \sim a_{2D}$$

$$L_{a,2D} = \frac{l_{a,avg,2D}}{l_{a,avg,3D}} \cdot L_{a,3D} \approx \frac{a_{2D}}{a_{3D}} \cdot a_{3D}^3 \cdot 4 \cdot 10^6 \text{ mm}^{-2}$$

$$a_{2D} = a_{3D}^{3/2} \cdot 6.813 \text{ mm}^{-1/2}$$

$$L_{a,2D} \approx \frac{a_{3D}^{3/2}}{a_{3D}} \cdot a_{3D}^3 \cdot 4 \cdot 10^6 \text{ mm}^{-2} \cdot 6.813 \text{ mm}^{-1/2}$$

$$= a_{3D}^{3/2} \cdot a_{3D}^2 \cdot 4 \cdot 10^6 \text{ mm}^{-2} \cdot 6.813 \text{ mm}^{-1/2}$$

$$L_{a,2D} \approx a_{3D}^{7/2} \cdot 27.252 \cdot 10^6 \text{ mm}^{-3/2}$$

Required 2D-Interconnect Density

- *M* Layers of Metal Interconnect:
- $p_{\rm M}$ Metal pitch
- Number of available metal layers M
- Metal layer utilization η

Available Aggregated Interconnect length

$$L_{int} = \eta \cdot \frac{M}{p_M} \cdot a_{2D}^2$$

$$\pi_{req} \coloneqq \frac{p_M}{M} = \eta \cdot \frac{a_{2D}^2}{L_{int}} = \eta \cdot \frac{a_{2D}^2}{L_{a,2D}} = \eta \cdot \frac{\left(a_{3D}^{3/2} \cdot 6.813 \text{ mm}^{-1/2}\right)^2}{a_{3D}^{7/2} \cdot 27.252 \cdot 10^6 \text{ mm}^{-3/2}}$$
$$\pi_{req} = \eta \cdot \frac{1.704 \cdot 10^{-6} \text{ mm}^{3/2}}{\sqrt{a_{3D}}}$$

Microcircuit with $a_{3D} = 1$ mm, assuming $\eta = 0.5$:

$$\begin{split} L_{a, 3D} &= 4 \cdot 10^{6} \text{ mm} \\ a_{2D} &= 6.813 \text{ mm} \\ L_{a, 2D} &= 27.252 \cdot 10^{6} \text{ mm} \\ \pi_{req} &= 0.852 \cdot 10^{-6} \text{ mm} = 0.852 \text{ nm} \end{split}$$

Available 2D-Interc. Densities in Select CMOS Nodes

CMOS Node	180 nm (BrainScaleS)	130 nm (SpiNNaker)	28 nm (Economic)	7 nm (2018 ?)	5 nm (Final ?)
N	1	10 ²	10 ⁵	27·10 ⁵	
$M_{max}^{1)}$	6-4=2	6-4=2	10-4=6	12-4=8	14-4=10
$p_{M, min}^{2)}$	500 nm	340 nm	90 nm	38 nm	24 nm
$\pi_{available}$	250 nm	170 nm	15 nm	4.75 nm	2.4 nm

¹⁾ Assuming two metal layers for local interconnect and two layers for supply and clock distribution ²⁾ Actually, this is the pitch of the 1x-pitch layer(s), only

 $\pi_{req} = 0.852 \text{ nm}$

• Even the interconnect density predicted for the future 5-nm CMOS node (possibly the end of scaling) will not match what would be required to mimic biological interconnect

Limits to Speed-Up Communication

Human Brain Data Traffic vs. Global Consumer Internet Traffic

Limits to Speed-Up Communication

A Simple "Gedankenexperiment"

Limits to Speed-Up Computation

COMPARTMENTAL DENDRITE

Limits to Speed-Up Computation

D Newton-Raphson-based Implicit Single-step Solver \bigcirc NL ODE System: v' = f(v, t)

Limits to Speed-Up Computation

Single Neuron with Compartmental Dendrite

- **Assume:**
 - O 14 Passive Compartments
 - **O 2 Lumped COBA Synapses per Compartment;** (which can be integrated autonomously)
 - **O 2 Soma Equations**
- ⇒ 16 x 16 Equation System

Critical Path Length LU-based Linear Equation Solver w./o. any pivoting
Massively Parallel Solver / Maximally Sparse Tridiagonal Matrix
Without Pivoting and any "Bells and Whistles" ...

 $\approx 3 \ge n \ge (\text{FDIV+FMAC}) \approx 50 \ge (\text{FDIV+FMAC})$

Assume:

 $O \approx 10$ Cycles per Dependant (FDIV+FMAC) Instructions

 \approx 500 Cycles

O 5-GHz Machine with 0.2-ns Clock Cycle

≈ **100 ns**

O 5 Newton-Raphson Iterations

≈ 500 ns

Limits to Speed-Up Communication

Half Round-Trip Time vs Link Distance

Latency vs. distance dependency transforms speed-up challenge into a integration-density challenge

Localized Connection Probability limits "Projection Field": Need "Local Broadcast"

O Use Pair of Limited-Order Trees

Localized Connection Probability limits "Projection Field": Need "Local Broadcast"

O Use Pair of Limited-Order Trees

Localized Connection Probability limits "Projection Field": Need "Local Broadcast"

O Use Pair of Limited-Order Trees

Localized Connection Probability limits "Projection Field": Need "Local Broadcast"

O Use Pair of Limited-Order Trees

- Massively Parallel
- **☑** Ultra-Scalable
- ☑ Highly-Regular Interconnect
- ☑ Very Simple Route Protocol

Uplink: Unicast straight up, straight up, ... Downlink: Multicast down, down, ...

Ultra-Large (Wafer-Scale) Silicon Interposer

Firsthæraroo-pet-chitichtenconcerutenetaetayearyer(s)

Flip-Chip-Die-Attach Memory Devices

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

Commodity (off-the-shelf) devices

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

Proprietary dedicated devices

- **O** Moderate technologies
- **O** Relatively cheap

Single Hybrid Compute Node

- **O** Most advanced / best fitting technologies
- **O** Relatively cheap
- **O** Fully functional

Proprietary devices

- **O** Moderate technologies
- **O** Relatively cheap
- **O** Fully functional

Integrate Many Hybrid Compute Nodes

Challenges:

- **O** Mechanical stability
- **O** Thermal stability

Outline

- Introduction
- Neuronal Network Components and Models
- Exemplary Large-Scale Networks
- **G** Future Requirements
- **G** Simulation Principles
 - Computation: Numerical ODE Solvers
 - Communication: AER
- **State-of-the Art**
- **Brick Walls**
 - Computation: ...
 - Communication: ...
- **Conclusion**

Conclusions

- **D** Requirements Future Neuroscience Simulation Platforms
- **G** State-of-the Art not sufficient by far
- **U** Very challenging in today's technologies
- **Some** *"*brick walls" ahead ...

Thank you very much for you kind attention !