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Fixed-Priority Real-Time Scheduling

Schedule Threads according to a Fixed Priority onto Processor(s)
Optimal priority assignments for unicore ({rate,deadline} monotonic)
For multicore: Global fixed-priority is most flexible schema

1 23 83 8 38 35 4

CPU 0 CPU 1 CPU 2

Global Fixed-Priority Scheduler
select top-3 threads

Priority Inversion!

Real-time analysts would like a zero RTOS overhead, but. . .
Global scheduling requires global synchronization (locking)
Dispatch on different CPU requires inter-processor interrupt
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Sloth: Threads as Interrupts [Hof+09; HLSP11; Hof+12]
[Dan+14; Mül+14]

Sloth RTOS in a Nutshell: Threads ≡ ISR
Interrupt controller already selects high-prio interrupt source.
Interrupt service routine performs context switch between threads.
Supports only unicore and partitioned multicore scheduling.
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[Dan+14; Mül+14]

Sloth RTOS in a Nutshell: Threads ≡ ISR
Interrupt controller already selects high-prio interrupt source.
Interrupt service routine performs context switch between threads.
Supports only unicore and partitioned multicore scheduling.

C Code: 200–500 lines
ROM: 300–900 bytes
RAM: 0–20 bytes
event latency: 12–60 cycles
strict priority obedience
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InterSloth: Extension to Global FP Scheduling

IRQ controller

IRQ controller
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We require a strict priority-obedient IRQ controller, but existing. . .
. . . use a threshold and choose at random (ARM)
. . . do not support re-delivery of IRQs (Intel)
. . . support only fixed CPU–IRQ mapping (Infineon AURIX)

MIRQ-V: A Strict Priority-Obedient Multi-Core IRQ Controller
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Motivation

MIRQ-V: A Strict Priority-Obedient Multi-Core IRQ Controller

InterSloth: An RTOS on Top of MIRQ-V

Evaluation

Conclusion
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MIRQ-V: Features and Rocket Integration

Feature set is designed for hard real-time systems
Freely configurable interrupt and CPU interfaces
Up to 255 interrupt/CPU priority levels
Highest-priority IRQ is always delivered to lowest-priority CPU
Software-triggered IRQ sources and IRQ migration

Integration with a RISC-V processor
Rocket Chip Generator is written in Chisel HDL (Scala DSL)
MIRQ-V replaces the Platform-Level Interrupt Controller (PLIC)
Existing prototype and work on a more efficient implementation
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Example Interrupt Delivery with Software IRQ

CPU #1
MIRQ-V

Priority(CPU #1) = 1
Priority(CPU #2) = 3

CPU #2

IRQ 1 / Priority = 2
trigger()

cpu = findMin(CPUs)
if cpu.prio < irq.prio

trigger(cpu)

irq = claim()

E

isr_fns[irq]()

claim()

irq = 1

complete(irq) complete()
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MIRQ-V: A few technical details

Race conditions between delivery and CPU-priority changes
Normal PLIC IRQ Source has two states: pending and in service
Introduce delivered if CPU is informed but has not claim()ed.
Automatic re-delivery of delivered IRQs if a CPU priority changes.

CPU #0
MIRQ-V

Priority(CPU #1) = 1

Priority(CPU #2) = 3
CPU #1

IRQ 1 / Priority = 2
trigger

()

cpu = findMin(CPUs)
if cpu.prio < irq.prio

trigger(cpu)

irq = claim()

E

claim()
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MIRQ-V: A few technical details

Race conditions between delivery and CPU-priority changes
Normal PLIC IRQ Source has two states: pending and in service
Introduce delivered if CPU is informed but has not claim()ed.
Automatic re-delivery of delivered IRQs if a CPU priority changes.

Backward Compatibility with the original PLIC

migrate() IRQ to other CPU, trigger() from software.
Encode new commands into claim/complete-register values

00 IRQ

complete()

01 IRQ

migrate()

10 IRQ

trigger()
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InterSloth: An RTOS for MIRQ-V

MIRQ-V already performs most of the heavy lifting
No global synchronization need, as MIRQ-V is single source of truth.
Scheduling and re-scheduling decisions are calculated in parallel.
The CPU with the lowest priority is informed about high-priority IRQ.

InterSloth must handle preemption of already running ISRs
Remember: Sloth⇒ Thread ≡ ISR

Preemption can happen at any time and must be performed
transparent.
ISR prologue always safes old thread context.
Start new thread or resume to old thread context.
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Example of Thread Activation and Preemption

CPU #0

Ta
sk

1

Activate-
Task(Task2)

CPU #1

Ta
sk

2

E

Activate-
Task(Task3)

E

T
save_ctx(Task1);
migrate(IRQ1);
dispatch(Task3);

Ta
sk

3

TerminateTask()

E

T

restore_ctx(Task1);
dispatch(Task1);

Ta
sk

1
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Evaluation: MIRQ-V

IRQ arbitration in 1 cycle, delivery in 4 cycles

MIRQ-V Design with parametrizable number of IRQs/CPUs
LUT demand is linearly larger than PLIC LUT demand
Full Rocket Chip uses 23.000 LUTs
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Evaluation: InterSloth

Cycle-Accurate Simulator on Verilog level (Verilator)
Timing Measurements from Software with RISC-V’s mcycle register
Measure time that is spent in the InterrSloth kernel

Measure three characteristic InterSloth system calls
Context switch must save and restore 32 general-purpose registers.

System Call Cycles Instructions

ActivateTask() 318 130
Trigger thread and dispatch on different CPU

TerminateTask() 93 60
Start the idle thread

ChainTask() 261 148
Destroy current thread and dispatch in this CPU
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Conclusion

Problems for Multi-Core Real-Time Scheduling
Overheads for Inter-Core Communication and Synchronization
Multi-Core IRQ Controllers are not strictly enforcing priorities.

MIRQ-V: A Strict Priority-Obedient Multi-Core IRQ Controller
Always route highest-priority IRQ to lowest-priority CPU.
Parametrizable Hardware Design with Rocket (RISC-V) Integration
Software-Triggered IRQs and IRQ Migration

InterSloth: Minimal-Effort Global Fixed-Priority Scheduling
ISRs save the old and restore/start the new thread context.
Requires no global synchronization between CPUs

Future Work
MIRQ-V: Decrease LUT Demand by Optimized Delivery Invalidation
InterSloth: Support more RTOS Primitives (Mutexes, Alarms, Events)
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