

A Latency-optimized Hash-based Digital Signature Accelerator for the Tactile Internet

Tensilica University Day 2019

<u>Robert Wittig</u> / Technische Universität Dresden

Friedrich Pauls / Barkhausen Institut

Pauls, F., Wittig, R., Matus, E., & Fettweis, G. (2019). A Latency-optimized Hash-based Digital Signature Accelerator for the Tactile Internet. In SAMOS. Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-27562-4_7

Tactile Internet

- Tactile Internet as evolution of Internet of Things (IoT)
- Enables real-time interactive systems in areas such as
 - Automation
 - Transportation
 - Gaming
 - Education
 - Healthcare
- Total Consumer 20 Business: Cross-Industry • Key requirements # IoT Devices (Billions) Business: Vertical-Specific Extremely high availability and reliability • 15 Strong security • Δ 10 Encryption Ξ. Data authentication 5 Ultra-low latency . 0 1 ms 2016 2017 2018 2019 2020

25

Number of IoT devices [1]

[1] https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016

VODAFONE CHAIR

TU Dresden

The Global Security Threat

The New York Times Cyberattack Shows Vulnerability of Gas Pipeline Network

April 4, 2018

International Business Times

"New botnet found targeting billions of ARC-based IoT devices worldwide"

Jan 17, 2018

https://www.bloomberg.com/news/articles/2018-04-03/day-after-cyber-attack-a-third-gas-pipeline-data-system-shuts
 https://www.ibtimes.co.uk/what-mirai-okiru-new-botnet-found-targeting-billions-arc-based-iot-devices-worldwide-1655491
 https://www.nytimes.com/2018/04/04/business/energy-environment/pipeline-cyberattack.html
 https://motherboard.vice.com/en_us/article/vv7xg9/blame-the-internet-of-things-for-destroying-the-internet-today

"Blame the Internet of Things for Destroying the Internet

Oct 21, 2016

Bloomberg

Technology

The Cyberattack That Crippled Gas Pipelines Is Now Hitting Another Industry

April 5, 2018

Security Considerations

- Security vulnerabilities → Dangerous consequences:
 - Direct attack:

• Indirect attack:

- Strong security of future devices is a must!
 - Encryption (important, may be optional)
 - Data Authentication (essential for security)
 → Provided by digital signatures

Digital signatures widely used today

- Digital signatures are fundamental building block for:
 - Banking, E-Mail, Online Shopping, Social Media, Cloud Storage, ...
 - Software updates
 - Sim card, TPM
 - V2X, IoT
- Digital Signatures used today are based on problems which are (currently) hard to solve:
 - Factorization (RSA)
 - Discrete Logarithm (Elliptic Curve Cryptography)
- Both algorithms not suitable for post-quantum cryptography [Shor '94]
- Quantum computers in development all over the world (e.g. Intel, IBM, Microsoft, Google)
 - \rightarrow Unknown when powerful QC will become available; > 10 years
 - \rightarrow Once they are there, most of our current security primitives will become useless
- Strong need for post-quantum digital signatures

Research Objective

Quantum Computers break current signatures schemes

Hash-based Digital Signatures

- Large signatures
- High processing demand

Can Hash-based Digital Signatures meet the low-latency requirements of the tactile internet?

- Achievable latencies?
- Trade-offs?
- What are most efficient solutions?
- What use cases can be served?

Principle of Hash-based Digital Signatures

eXtended Merkle Signature Scheme (XMSS)

VODAFONE CHAIR

TU Dresden

h

State-of-the-Art XMSS Implementations

- High end desktop PC, Oliveira et al. [15]
 - Intel Core i7 @ 4 GHz
 - XMSS Hash Algorithm: SHAKE128
 - Sign operation: 3.7 ms
 - Verify operation: 0.3 ms

- Our initial Implementation:
 - XMSS Reference Implementation, SHAKE128
 - Cadence Tensilica LX6 @ 1 GHz
 - Sign operation: 149 ms
 - Verify operation: 36 ms

- Objective: End-to-end Latency of Application of a 1ms
 - Time budget includes: sensor input, processing, data transmission
 - Time budget for authentication 0.1 ms

\rightarrow Hardware acceleration necessary

[15] Ana Karina D. S. de Oliveira et el, 2017. High performance of hash-based signature schemes.

[17] Wang, W. et al., 2018 XMSS and Embedded Systems - XMSS Hardware Accelerators for RISC-V

VODAFONE CHAIR

- RISC-V Embedded XMSS Hardware Accelerator, Wang, W. et al. [17]
 - RISC-V (FPGA @ ~85 MHz)
 - XMSS Hash Algorithm: SHA-256
 - Sign operation: 23.5 ms
 - Verify operation: 6.54 ms

Slide 9

11/12/2019

Bottleneck Analysis

- Benchmark Implementation
 - Key generation
 - Sign operation
 - Verify operation
- Software profiling
- Over 90% of operations are related to hash operations
 - \rightarrow Hash function is the bottleneck
- Hardware Acceleration
 - ASIP Approach
 - Instruction set extensions
 - Cadence Tensilica LX6
 - 7-stage Pipeline
 - 64-bit memory interface
 - Hash instance for XMSS: SHAKE128 (SHA-3 family, a.k.a Keccak)

VODAFONE CHAIR

11/12/2019

KeccakF1600 StatePermute

keccak_squeezeblocks

keccak_absorb

ashldi3

shake128

other

ull_to_bytes

Cycles (%)

55,61

3,75

8,53

26,80

TU Dresden

Generic Keccak Accelerator

- Choosing state vector implementation
 - 25 lanes of 64 bit each as state needed \rightarrow 1600 bit
 - ightarrow needs to be mapped to HW

- Low latency consideration:
 - Rnd computation should be computed in 1 cycle
 - Only possible if full state (1600 bit) is available
 - \rightarrow 25x64 bit HW state register

VODAFONE CHAIR

Slide 11

Generic Keccak Accelerator

Instruction Histogram of Node Computation

Cycles per call	l: 257	7.0		
kec_wr_state	82.0	(31.9%)	(2.2	cpi
kec round	73.0	(28.4%)	(1.0	cpi
movi	19.0	(7.4%)	(0.3	cpi
s32i.n	17.0	(6.6%)	(1.0	cpi
kec_rd_lane	12.0	(4.7%)	(1.0	cpi
movi.n	9.0	(3.5%)	(0.4	cpi
s32i	9.0	(3.5%)	(0.5	cpi
mov.n	7.7	(3.0%)	(0.4	cpi
132i	7.3	(2.9%)	(0.7	cpi
nop	5.0	(1.9%)	(0.3	cpi
addi	4.0	(1.6%)	(0.5	cpi
entry	4.0	(1.6%)	(4.0	cpi
kec init	3.0	(1.2%)	(1.0	cpi
s8i	2.0	(0.8%)	(0.5	cpi
132r	1.0	(0.4%)	(1.0	cpi
retw.n	1.0	(0.4%)	(1.0	cpi
addi.n	1.0	(0.4%)	(1.0	cpi

- Intermediate performance analysis \rightarrow 257 cycles to compute a node
- Script to extract profiling data \rightarrow instr. histogram
- Instruction histogram analysis of a node computation
 - High pressure on memory subsystem ٠
 - Loads (35% of cycles) ۰
 - Stores (16% of cycles) •
 - >50% of cycles for memory operations ۰

VODAFONE CHAIR

Slide 12

XMSS Specific Accelerator: Results Shift

- Result Shift Mechanism
 - Reduce load/stores of intermediate
 results
- HW Padding and Result Shift
 - Reduces cycles from 257 \rightarrow 201
 - No buffers \rightarrow cheap in area
 - Still 42% of cycles for Load/Store

Instruction Histogram of Node Computation

L: 201	L.O		
73.0	(36.3%)	(1.0	cpi)
62.0	(30.8%)	(2.6	cpi)
18.3	(9.1%)	(0.3	cpi)
12.0	(6.0%)	(1.0	cpi)
8.0	(4.0응)	(1.0	cpi)
6.3	(3.2%)	(0.4	cpi)
5.3	(2.7응)	(0.3	cpi)
4.3	(2.2%)	(0.3	cpi)
4.0	(2.0응)	(4.0	cpi)
3.0	(1.5%)	(1.0	cpi)
2.3	(1.2응)	(0.3	cpi)
1.0	(0.5%)	(1.0	cpi)
1.0	(0.5%)	(1.0	cpi)
0.3	(0.2응)	(0.3	cpi)
	1: 200 73.0 62.0 18.3 12.0 8.0 6.3 5.3 4.3 4.0 3.0 2.3 1.0 1.0 0.3	1: 201.0 73.0 (36.3%) 62.0 (30.8%) 18.3 (9.1%) 12.0 (6.0%) 8.0 (4.0%) 6.3 (3.2%) 5.3 (2.7%) 4.3 (2.2%) 4.0 (2.0%) 3.0 (1.5%) 2.3 (1.2%) 1.0 (0.5%) 1.0 (0.5%) 0.3 (0.2%)	1: 201.0 73.0 (36.3%) (1.062.0 (30.8%) (2.618.3 (9.1%) (0.312.0 (6.0%) (1.08.0 (4.0%) (1.06.3 (3.2%) (0.45.3 (2.7%) (0.34.3 (2.2%) (0.34.0 (2.0%) (4.03.0 (1.5%) (1.02.3 (1.2%) (0.31.0 (0.5%) (1.01.0 (0.5%) (1.00.3 (0.2%) (0.3

XMSS Specific Buffer Architecture

- 2 x Buffers (B1 and B2)
 - 32 byte each
 - Serve Slot 1 and 2
- Result Buffer
 - 32 byte
 - Serves Slot 2

Number of Cycles (% of Total))	
Architecture	Total	Load	Store	f		Other	
Keccak HW + Padding Gen./Result Shift + Tailored Buffers (FB-EL1)	$\begin{array}{c}257\\201\\92\end{array}$	90 (35%) 63 (31%) $6 \checkmark (7\%)$	$\begin{array}{c} 40 \\ 22 \\ 2 \\ 2 \\ 2 \\ \end{array} \begin{pmatrix} (16\%) \\ (11\%) \\ (2\%) \\ \end{array}$	73 73 73	(28%) (36%) (79%)	$54 (21\%) \\ 42 (21\%) \\ 11 (12\%)$	

Improving the Round Function Computation

VODAFONE CHAIR

Slide 15

Results

			Number of Cycles (% of Total)					
Architecture			Total	Load	Store	e f	r O	other
Keccak HW 257 90 (35%) 40 (16%) 73 (28%) 54 (21%) + Padding Gen./Result Shift 201 63 (31%) 22 (11%) 73 (36%) 42 (21%) + Tailored Buffers (FB-EL1) 92 6 (7%) 2 (2%) 73 (79%) 11 (12%) + Round Function (FB-EL3) 43 6 (14%) 2 (4%) 24 (56%) 11 (26%)								
	$\begin{array}{c} \text{Cells} \\ (10^3) \end{array}$	(10^3)	Cells (rel.)	$\begin{array}{c} \text{Area} \\ (\text{mm}^2) \end{array}$	Power (mW)	$\begin{array}{c} { m Sign} \ (\mu { m s}) \end{array}$	Verify (µs)	KeyGen (s)
CT-LX6	88.8	0	(+ 0%)	0.040	9	149k	$35.9\mathrm{k}$	-
FB-EL1	143.8	54.9	(+62%)	0.069	21	330	79	-
FB-EL3	173.1	84.2	(+95%)	0.081	25	176	42	178
MultiBuffer [15] Wang et al. [17]						$3740 \ (23.5k)^{a}$	$\frac{300}{(6.5k)^{a}}$	410 _ ^a

^a In [17] h = 10 is used. Comparison of key generation times would be nonproductive.

Conclusion

- Latency goal 0.1 ms
- State-of-the-Art implementations two slow: 4ms up to 30ms

- System design for low-latency XMSS processing
 - Hash function specific: Generic Keccak (SHA-3) Accelerator
 - Algorithm specific: XMSS Accelerator
 - HW padding generator, result shift
 - Tailored Buffer Architecture ($T_{sign} = 330 \mu s$, $T_{verify} = 79 \mu s$)
 - Optimization of round function ($T_{sign} = 176\mu s$, $T_{verify} = 42\mu s$)
 - Further latency optimizations possible ($T_{sign} = 39\mu s$) $\rightarrow T_{Total} = 81\mu s$
- Low-latency data authentication in sub-millisecond range feasible