OrthrusPE: Runtime Reconfigurable Processing Elements for Binary Neural Networks

Nael Fasfous

Technical University of Munich
Department of Electrical and Computer Engineering
Chair of Integrated Systems

Outline

- Optimization of Convolutional Neural Networks
- Challenges of Binary Neural Networks
- Motivation for Runtime Reconfigurable BNN Processing Elements
- OrthrusPE: Dual Modes
- Experimentation and Results

Optimization of Convolutional Neural Networks

Algorithmic
Hardware

Optimization of Convolutional Neural Networks

Optimization of Convolutional Neural Networks

Nael Fasfous | Chair of Integrated Systems | TUM

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations \longrightarrow Replace Multiplications by XNOR ops Replace Accumulations by Popcount ops

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

Replace Multiplications by XNOR ops Replace Accumulations by Popcount ops

Reduce Memory requirements (1/16 of FP-16)

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

Overview of Binary Neural Networks

Naïve Binarization

Severe information loss: 10 and 0.1 have the same effect on the network.
$\operatorname{sign}(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}$
Nael Fasfous | Chair of Integrated Systems | TUM

Overview of Binary Neural Networks

Approximation through binary bases

Overview of Binary Neural Networks

Approximation through binary bases

Captured Information:
0.1 is less positive than $\mathbf{1 0}$

Overview of Binary Neural Networks

Approximation through binary bases

Captured Information:
0.1 is less positive than $\mathbf{1 0}$

4 and 3 lie between 10 and 0.1

Overview of Binary Neural Networks

Approximation through binary bases

Captured Information:
0.1 is less positive than 10

4 and 3 lie between 10 and 0.1
4 and 3 are single unit away from each other

Overview of Binary Neural Networks

Approximation through binary bases

1	-2	4
10	0.1	3
-5	7	-3

Captured Information:
0.1 is less positive than 10

4 and 3 lie between 10 and 0.1
4 and 3 are single unit away from each other

Information can be extracted for negative numbers, e.g. $\operatorname{sign}(x+3)$
$\operatorname{sign}(x)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}$

Overview of Binary Neural Networks

Approximation through binary bases

Overview of Binary Neural Networks

Approximation through binary bases

Overview of Binary Neural Networks

Approximation through binary bases

1	-2	4
10	0.1	3
-5	7	-3

BNNs with only 4-5\% accuracy degradation from full-precision CNN on ImageNet [1].

How Binary are Binary Neural Networks?

$$
A^{l}=\operatorname{Conv}\left(W^{l}, A^{l-1}\right)
$$

How Binary are Binary Neural Networks?

$H^{l-1} \in \mathbb{B}^{X_{i} \times Y_{i} \times C_{i} \times N} \quad B^{l} \in \mathbb{B}^{K \times K \times C_{i} \times M \times C_{o}}$

$$
A^{l}=\operatorname{Conv}\left(W^{l}, A^{l-1}\right)
$$

$$
\mathbb{B}=\{0,1\}
$$

How Binary are Binary Neural Networks?

How Binary are Binary Neural Networks?

[^0]
How Binary are Binary Neural Networks?

How Binary are Binary Neural Networks?

[^1]
How Binary are Binary Neural Networks?

How Binary are Binary Neural Networks?

$$
A^{l}=\sum_{m=1}^{M} \sum_{n=1}^{N} \alpha_{m} \beta_{n} \operatorname{BinConv}\left(B_{m}^{l}, H_{n}^{l-1}\right)
$$

$$
a_{m, n}=\sum_{c_{i}=1}^{C_{i}}\left(p_{m, n, c_{i}}\right)
$$

$$
p_{m, n, c_{i}}=\operatorname{popcnt}\left(\operatorname{xnor}\left(b_{k_{x}, k_{y}}, h_{x_{i}+k_{x}, y_{i}+k_{y}}\right)\right)
$$

$\mathbb{B}=\{0,1\}$

How Binary are Binary Neural Networks?

[^2]
How Binary are Binary Neural Networks?

$$
\begin{aligned}
& \text { A } A^{l}=\sum_{m=1}^{M} \sum_{n=1}^{N} \alpha_{m} \beta_{n} \operatorname{BinConv}\left(B_{m}^{l}, H_{n}^{l-1}\right) \\
& a_{m, n}=\sum_{c_{i}=1}^{C_{i}}\left(p_{m, n, c_{i}}\right) \\
& \underbrace{p_{\text {Fixed-point }}}_{\substack{p_{m, n, c_{i}}}} \operatorname{popcnt} \underbrace{\left(x n o r\left(b_{k_{x}, k_{y},} h_{x_{i}+k_{x}, y_{i}+k_{y}}\right)\right.}_{\text {Binary }}) \\
& \mathbb{B}=\{0,1\}
\end{aligned}
$$

More FP in Binary Neural Networks

- Binary Weight and Activation Bases (Scale/Shift)
- First Layer Remains Non-Binarized
- Batch Normalization

More FP in Binary Neural Networks

- Binary Weight and Activation Bases (Scale/Shift)
- First Layer Remains Non-Binarized
- Batch Normalization

OrthrusPE: Runtime Reconfigurable PEs for BNNs

Dual Modes

- Fixed-precision mode: First layer, Batch-norm, Scale and Shift Operations
- Binary mode: SIMD Binary Hadamard Products and Popcounts
- Achieved with high resource reuse

OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution

1	1	1	1	1	1			
0	0	0	0	0	0		0	x
1	0	1	0	1	0		0	x
X	x	X	x	x	x		x	

Kernel: $b^{l} \subset B_{m}{ }^{l}$
101

1	0	1

1	0	1

OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution

OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution

OrthrusPE: Dual Modes

Runtime Reconfigurability

- Binary Mode

Fixed-Precision Mode \square Reconfiguration Signals

Using the same hardware resource for two distinct, critical BNN operations

OrthrusPE: Dual Modes

Runtime Reconfigurability

- Binary Mode

Fixed-Precision Mode \square Reconfiguration Signals

Using the same hardware resource for two distinct, critical BNN operations

OrthrusPE: Dual Modes

Runtime Reconfigurability

Using the same hardware resource for two distinct, critical BNN operations

OrthrusPE: Dual Modes

Runtime Reconfigurability

Using the same hardware resource for two distinct, critical BNN operations

Experimentation and Evaluation

Synthesized Four Throughput-Equivalent Configurations:

- OrthrusPE
- OrthrusPE-DS (Dual-Static): SIMD Binary Hadamard Products on Static DSP
- Hybrid (Common): Binary operations on LUTs, FP operations on DSP
- All-LUT: Execution restricted to LUTs

Experimentation and Evaluation

Resource Utilization

- OrthrusPE and OrthrusPE-DS are more resource efficient across all target accelerator frequencies.

Experimentation and Evaluation

Resource Utilization

- OrthrusPE's closest FINN configuration @200MHz
- 16 Extra Bit Accumulations
- 3 MACs (through reconfigurability)
- 32\% fewer LUTs

Experimentation and Evaluation

Dynamic Power Estimation

- OrthrusPE more efficient across all frequencies
- Results scale as accelerators use 100 1000s of PEs

Conclusion and Future Work

- Accurate BNNs cannot be achieved without fixed-point operations and reliance on DSP blocks.
- OrthrusPE improves the efficiency of computation by executing both fixed-point and binary ops on FPGA hard blocks.
- Accurate BNNs solve many of the computation and memory challenges for deep neural network workloads on edge devices.

Thank you for your attention

[^0]: Nael Fasfous | Chair of Integrated Systems | TUM

[^1]: Nael Fasfous | Chair of Integrated Systems | TUM

[^2]: Nael Fasfous | Chair of Integrated Systems | TUM

