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Replace Accumulations by Popcount ops
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MNIST, CIFAR-10, SVHN

ImageNet

Reduce Memory requirements (1/16 of FP-16)
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Naïve Binarization
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𝑠𝑖𝑔𝑛 𝑥
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Severe information loss:

10 and 0.1 have the same effect on the 

network.

𝑠𝑖𝑔𝑛 𝑥 =  
0, 𝑥 < 0
1, 𝑥 ≥ 0
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[1] X. Lin et al., “Towards accurate binary convolutional neural network,” NIPS, 2017.
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Motivation for Reconfigurable Processing Elements
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OrthrusPE: Runtime Reconfigurable PEs for BNNs
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Dual Modes

• Fixed-precision mode: First layer, Batch-norm, Scale and Shift Operations

• Binary mode: SIMD Binary Hadamard Products and Popcounts

• Achieved with high resource reuse
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Experimentation and Evaluation
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Synthesized Four Throughput-Equivalent Configurations:

• OrthrusPE

• OrthrusPE-DS (Dual-Static): SIMD Binary Hadamard Products on Static DSP

• Hybrid (Common): Binary operations on LUTs, FP operations on DSP

• All-LUT: Execution restricted to LUTs
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Resource Utilization

• OrthrusPE and OrthrusPE-DS are more 

resource efficient across all target 

accelerator frequencies.
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Resource Utilization

• OrthrusPE’s closest FINN configuration 

@200MHz

• 16 Extra Bit Accumulations

• 3 MACs (through reconfigurability)

• 32% fewer LUTs
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Dynamic Power Estimation

• OrthrusPE more efficient across all 

frequencies

• Results scale as accelerators use 100-

1000s of PEs



Conclusion and Future Work

Nael Fasfous | Chair of Integrated Systems | TUM

• Accurate BNNs cannot be achieved  without  fixed-point  operations  and  reliance  on  

DSP blocks.

• OrthrusPE improves the efficiency of computation by executing both fixed-point and 

binary ops on FPGA hard blocks.

• Accurate BNNs solve many of the computation and memory challenges for deep neural 

network workloads on edge devices.
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Thank you for your attention


