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* Binary Weights
« Binary Activations

« Binary Weights AND Activations »Replace Multiplications by XNOR ops
Replace Accumulations by Popcount ops

— Reduce Memory requirements (1/16 of FP-16) O
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Overview of Binary Neural Networks

Naive Binarization
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Severe information loss:
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Approximation through binary bases
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Captured Information:

0.1 is less positive than 10

4 and 3 lie between 10 and 0.1

4 and 3 are single unit away from
each other

Information can be extracted for
negative numbers, e.g. sign(x + 3)

. 0, x <0
sign(x) = 1 >0
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Approximation through binary bases
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Approximation through binary bases
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OrthrusPE: Runtime Reconfigurable PEs for BNNs TUm

Dual Modes
« Fixed-precision mode: First layer, Batch-norm, Scale and Shift Operations

« Binary mode: SIMD Binary Hadamard Products and Popcounts
« Achieved with high resource reuse
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OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution
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Runtime Reconfigurability

CARRYCASCOUT* === Binary Mode
ettt S 7 ittt oty ferlvyt=d wly Wy Yol . iy
| BCOUT* ACOUT* ; MULTSIGNOUT T‘r pcout | mmm= [ixed-Precision Mode
I . . .
: ® ALUMODE —J | Reconfiguration Signals
IB 4 P 48 |
I
: Dual B Register - 1
: 18[, | r P 4 =_JI
1A 30 b | cARRYOUT I
| || I
M — I
: Dual A, D, P 48 1
and Pre-adder 1
o= |¥ — i :
o o |_ParTERNDETECT | US|ng the same
| o
17-Bit Shift P I Tl
| : i L , PrTEmEoETEST  hardware resource for
NVODE || || ¢ |_t | i crEGCEREE g distingt, critical
ICARRYIN | MULTSIGNIN® : !
| .
| OPMODE 7 .;I | CARRYCASCIN* I BNN operatlons
ICAHHYlNSEL 1
| I
I
I

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Nael Fasfous | Chair of Integrated Systems | TUM



OrthrusPE: Dual Modes

Runtime Reconfigurability

Dual B Register

T

Dual A, D,
and Pre-adder

30

25

CARRYCASCOUT*

T ¥ Tpcout

17-Bit Shift

ALUMODE
4

A

INMODE 5 17-Bit Shift
' 3
ICARRYIN
| oPMODE 7 _‘D
| CARRYINSEL
|
|
| BCIN* ACIN*

PJ 48

P 42w
b | camrYout 7 i
I

I

& |
Pl

I

o PATTERNDETECT |
:l

b | pATTERNBDETECT !

CREG/C Bypass{Mask

MULTSIGNIN*
CARRYCASCIN*

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Nael Fasfous | Chair of Integrated Systems | TUM

TUTI

mmmm Binary Mode
mmm= Fixed-Precision Mode
Reconfiguration Signals

Using the same
hardware resource for
two distinct, critical
BNN operations



OrthrusPE: Dual Modes

Runtime Reconfigurability

18 30
18 \
Dual B Register [ ]

Dual A, D,
and Pre-adder ||

s e R VYSTE P gy Wy W
BCOUT* ACOUT* MULTSIGNOUT T

17-Bit Shift

;-

A

I iInmoDE 5

l 3
ICARRYIN |

| oPMODE 7 _‘D
;CAHHYINSEL

[

|

[ BCIN* ACIN*

Bl

PATTEI
P

CREG/C Bypass
MULTSIGNIN*
CARRYCASCIN*

CARRYCASCOUT*
kPCOUT" |
|
I
48 |
I
I
1
4, o1
CARRYOUT I
I
I
|
Bl
I
RNDETECT |
:l
PATTE'RNBDETECT—:
Mask :
I
1
I
I
I
I
pciNe |
|

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Nael Fasfous | Chair of Integrated Systems | TUM

TUTI

mmmm Binary Mode
mmm= Fixed-Precision Mode
Reconfiguration Signals

Using the same
hardware resource for
two distinct, critical
BNN operations



OrthrusPE: Dual Modes

Runtime Reconfigurability

BCOUT* ACOUT* 48 AR

Dual B Register .J
| 18

|
— a0
Dual A, D,
and Pre-adder ||

| INvoDE 5
ICARRYIN

CARRYCASCOUT*

e T MULTSIGNOUT* T ¥ pcout |

17-Bit Shift

l oPMODF 7.
| CARRYINSEL

ALUMODE
40

Bl

I
|
I
48 |
I
I
I

CARR

PATTE

RNDETECT

YOuT

&

CREG/C Bypass

MULTSIGNIN*
CARRYCASCIN*

PATTEI

RNBDETECT |

Mask

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Nael Fasfous | Chair of Integrated Systems | TUM

TUTI

mmmm Binary Mode
mmm= Fixed-Precision Mode
Reconfiguration Signals

Using the same
hardware resource for
two distinct, critical
BNN operations



Experimentation and Evaluation

Synthesized Four Throughput-Equivalent Configurations:

 OrthrusPE

* OrthrusPE-DS (Dual-Static): SIMD Binary Hadamard Products on Static DSP
» Hybrid (Common): Binary operations on LUTs, FP operations on DSP

 All-LUT: Execution restricted to LUTs
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Experimentation and Evaluation

Resource Utilization

e OrthrusPE and OrthrusPE-DS are more

resource efficient across all target
accelerator frequencies.

I . | F=770MHz F=160MHz
mplementation

| LUTs FF DSP | LUTs FF DSP
All-LUT 559 160 0 516 160 0
Hybrid (Common) 230 253 1 166 253 1
OrthrusPE 165 210 1 111 210 1
OrthrusPE-DS 120 229 2 87 229 2
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Resource Utilization
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Dynamic Power Estimation

* OrthrusPE more efficient across all
frequencies
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Conclusion and Future Work TN

« Accurate BNNs cannot be achieved without fixed-point operations and reliance on
DSP blocks.

« OrthrusPE improves the efficiency of computation by executing both fixed-point and
binary ops on FPGA hard blocks.

« Accurate BNNs solve many of the computation and memory challenges for deep neural
network workloads on edge devices.

Nael Fasfous | Chair of Integrated Systems | TUM



Thank you for your attention

Nael Fasfous | Chair of Integrated Systems | TUM



