

OrthrusPE: Runtime Reconfigurable Processing Elements for Binary Neural Networks

Nael Fasfous

Technical University of Munich

Department of Electrical and Computer Engineering

Chair of Integrated Systems

Outline

- Optimization of Convolutional Neural Networks
- Challenges of Binary Neural Networks
- Motivation for Runtime Reconfigurable BNN Processing Elements
- OrthrusPE: Dual Modes
- Experimentation and Results

Optimization of Convolutional Neural Networks

Structural

Algorithmic

Hardware

пп

Optimization of Convolutional Neural Networks

пп

Optimization of Convolutional Neural Networks

ТШ

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

- Binary Weights
- Binary Activations
- Binary Weights AND Activations —>Replace Multiplications by XNOR ops Replace Accumulations by Popcount ops

- Binary Weights
- Binary Activations
- Binary Weights AND Activations —

Replace Multiplications by XNOR ops Replace Accumulations by Popcount ops

→ Reduce Memory requirements (1/16 of FP-16)

Nael Fasfous | Chair of Integrated Systems | TUM

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations

Replace Multiplications by XNOR ops Replace Accumulations by Popcount ops

→ Reduce Memory requirements (1/16 of FP-16)

Nael Fasfous | Chair of Integrated Systems | TUM

Overview of Binary Neural Networks

- Binary Weights
- Binary Activations
- Binary Weights AND Activations Replace Multiplications by XNOR ops • Replace Accumulations by Popcount ops Reduce Memory requirements (1/16 of FP-16) Severe Information Loss MNIST, CIFAR-10, SVHN 📈 📈 ImageNet X

Naïve Binarization

Severe information loss: 10 and 0.1 have the same effect on the network.

$$sign(x) = \begin{cases} 0, & x < 0\\ 1, & x \ge 0 \end{cases}$$

Approximation through binary bases

Approximation through binary bases

Captured Information:

0.1 is less positive than 10

Approximation through binary bases

Captured Information:

0.1 is less positive than 10

4 and 3 lie between 10 and 0.1

Approximation through binary bases

Captured Information:

0.1 is less positive than 10

4 and 3 lie between 10 and 0.1

4 and 3 are single unit away from each other

Approximation through binary bases

Captured Information:

0.1 is less positive than 10

4 and 3 lie between 10 and 0.1

4 and 3 are single unit away from each other

Information can be extracted for negative numbers, e.g. sign(x + 3)

Approximation through binary bases

Nael Fasfous | Chair of Integrated Systems | TUM

[1] X. Lin et al., "Towards accurate binary convolutional neural network," NIPS, 2017.

Approximation through binary bases

Nael Fasfous | Chair of Integrated Systems | TUM

[1] X. Lin et al., "Towards accurate binary convolutional neural network," NIPS, 2017.

Approximation through binary bases

Nael Fasfous | Chair of Integrated Systems | TUM

[1] X. Lin et al., "Towards accurate binary convolutional neural network," NIPS, 2017.

 $A^l = Conv(W^l, A^{l-1})$

 $A^l = Conv(W^l, A^{l-1})$

$$\mathbb{B} = \{0,1\}$$

More FP in Binary Neural Networks

- Binary Weight and Activation Bases (Scale/Shift)
- First Layer Remains Non-Binarized
- Batch Normalization

More FP in Binary Neural Networks

- Binary Weight and Activation Bases (Scale/Shift)
- First Layer Remains Non-Binarized
- Batch Normalization

OrthrusPE: Runtime Reconfigurable PEs for BNNs

Dual Modes

- Fixed-precision mode: First layer, Batch-norm, Scale and Shift Operations
- Binary mode: SIMD Binary Hadamard Products and Popcounts
- Achieved with high resource reuse

OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution

πт

Kernel:
$$b^l \subset B_m^{\ l}$$

1 0 **1**
1 0 **1**
1 0 **1**

OrthrusPE: Binary Mode

Efficient SIMD Binary Hadamard Product Execution

OrthrusPE: Binary Mode

ТΠ

Efficient SIMD Binary Hadamard Product Execution

Runtime Reconfigurability

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Runtime Reconfigurability

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Runtime Reconfigurability

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Runtime Reconfigurability

*These signals are dedicated routing paths internal to the DSP48E1 column. They are not accessible via fabric routing resources.

Synthesized Four Throughput-Equivalent Configurations:

- OrthrusPE
- OrthrusPE-DS (Dual-Static): SIMD Binary Hadamard Products on Static DSP
- Hybrid (Common): Binary operations on LUTs, FP operations on DSP
- All-LUT: Execution restricted to LUTs

Resource Utilization

 OrthrusPE and OrthrusPE-DS are more resource efficient across all target accelerator frequencies.

	000												
			-		-	-							
IIIZAUOII	400												
	200		▲ ×;		*	*	×	*		*	X		
	1(00	20)0	300) 4	00	500	600	700	800		
				De	sign	Targ	get F	reque	ncy (1	MHz)			
-	– All-	LU	Т	-	Hy	brid	 ×	- Orth	rusPE	E 🔶	Orthr	usPE-I)S

(00

Implementation	F=	770MH	z	F=160MHz			
F	LUTs	FF	DSP	LUTs	FF	DSP	
All-LUT	559	160	0	516	160	0	
Hybrid (Common)	230	253	1	166	253	1	
OrthrusPE	165	210	1	111	210	1	
OrthrusPE-DS	120	229	2	87	229	2	

Resource Utilization

- OrthrusPE's closest FINN configuration @200MHz
 - 16 Extra Bit Accumulations
 - 3 MACs (through reconfigurability)
 - 32% fewer LUTs

Dynamic Power Estimation

- OrthrusPE more efficient across all frequencies
- Results scale as accelerators use 100-1000s of PEs

Conclusion and Future Work

- Accurate BNNs cannot be achieved without fixed-point operations and reliance on DSP blocks.
- OrthrusPE improves the efficiency of computation by executing both fixed-point and binary ops on FPGA hard blocks.
- Accurate BNNs solve many of the computation and memory challenges for deep neural network workloads on edge devices.

Thank you for your attention