Vector-based nonlinear upconversion applying center-weighted medians

verfasst von
Holger Blume
Abstract

One important task in the field of digital video signal processing is the conversion of one standard into another with different field and scan rates. Therefore we have developed a vector based nonlinear upconversion algorithm which applies nonlinear center weighted median filters (CWM). Assuming a 2-channel model of the human visual system with different spatio temporal characteristics, there are contrary demands for the CWM filters. We can meet these demands by a vertical band separation and an application of so-called temporally and spatially dominated CWMs. Hereby errors of the separated channels can be orthogonalized and avoided by an adequate splitting of the spectrum. By this we have achieved a very robust vector error tolerant up-conversion method which significantly improves the interpolation quality. By an appropriate choice of the CWM filter root structures main picture elements are interpolated correctly also if faulty vector fields occur. In order to demonstrate correctness of the deduced interpolation scheme picture content is classified. These classes are distinguished by correct or incorrect vector assignment and correlated or noncorrelated picture content. The mode of operation of the new algorithm is portrayed for each class. Whereas the mode of operation for correlated picture content can be shown by object models this is shown for noncorrelated picture content by the distribution function of the applied CWM filters. The new algorithm has been verified as well by an objective evaluation method the PSNR (peak signal to noise ratio) measurement as by a comprehensive subjective test series.

Externe Organisation(en)
Technische Universität Dortmund
Typ
Aufsatz in Konferenzband
Seiten
142-153
Anzahl der Seiten
12
Publikationsdatum
25.03.1996
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektronische, optische und magnetische Materialien, Physik der kondensierten Materie, Angewandte Informatik, Angewandte Mathematik, Elektrotechnik und Elektronik
Elektronische Version(en)
https://doi.org/10.1117/12.235826 (Zugang: Geschlossen)