A Power Efficient Network Coding Accelerator

Mattis Hasler – TU Dresden
Problem

• Very cool thing called „Random Linear Network Coding (RLNC)“
• Very high computation complexity
• Need to be done in every router
• Too much power consumption on general purpose hardware
• Custom hardware?
Solution

• Tomahawk MPSoC platform
• Ultra low power
• High power efficiency
• <500 MHz → high parallelity
• RDMA 128bit in and out
• SRAM 2 cycle access
• Tensilica LX 5 at the core
 ▪ Two 128bit data memory interfaces
What is Network Coding

Traditional Approach
- Data broken into pieces
- k-piece data set → k pieces
- All pieces needed
- Only these pieces will do

RLNC
- Mixtures created from pieces
- Any node can create mixtures
- Many mixtures possible
- Any k mixtures will do
Random Linear Network Coding

\[
\begin{pmatrix}
C_1 \\
C_2 \\
C_3 \\
C_4 \\
C_5 \\
C_6
\end{pmatrix}
=
\begin{pmatrix}
\alpha_{1,1} & \alpha_{1,2} & \alpha_{1,3} & \alpha_{1,4} & \alpha_{1,5} & \alpha_{1,6} \\
\alpha_{2,1} & \alpha_{2,2} & \alpha_{2,3} & \alpha_{2,4} & \alpha_{2,5} & \alpha_{2,6} \\
\alpha_{3,1} & \alpha_{3,2} & \alpha_{3,3} & \alpha_{3,4} & \alpha_{3,5} & \alpha_{3,6} \\
\alpha_{4,1} & \alpha_{4,2} & \alpha_{4,3} & \alpha_{4,4} & \alpha_{4,5} & \alpha_{4,6} \\
\alpha_{5,1} & \alpha_{5,2} & \alpha_{5,3} & \alpha_{5,4} & \alpha_{5,5} & \alpha_{5,6} \\
\alpha_{6,1} & \alpha_{6,2} & \alpha_{6,3} & \alpha_{6,4} & \alpha_{6,5} & \alpha_{6,6}
\end{pmatrix}
\begin{pmatrix}
P_1 \\
P_2 \\
P_3 \\
P_4 \\
P_5 \\
P_6
\end{pmatrix}
\]
Math basics

• Parameters
 ▪ Generation size
 ▪ Field size – Finite Field with \(q = 2^x \)

• Basic operations
 ▪ Encoding: \(X = CM \)
 ▪ Decoding: \(M = C^{-1}X \)

• Finite field arithmetic
 ▪ Multiplication
 ▪ Addition
 ▪ Inversion
Math basics for Finite Fields

• Finite Fields from prime number p and exponent n
 ▪ $GF(p^n)$

• Symbol in finite fields as polynomials
 ▪ $A(x) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \cdots + a_1x + a_0$

• Irreducible Polynomial
 ▪ Polynom that is not the product of two polynomials of positive degree

• Example:
 ▪ $GF(2^8), a = x^2 + 1, b = x^3 + x + 1, p = x^8 + x^4 + x^3 + x + 1$
Math basics for Finite Fields

• Addition
 ▪ Elementwise in the basic Field GF(2)
 ▪ → XOR
 ▪ \(a + b = a - b\)

• Multiplication
 ▪ Normal multiplication, reduced with irreducible polynom

• Inversion
 ▪ Finding number that holds: \(a^{-1}a = 1\)
 ▪ One idea: \(a^{q-1} = 1 \rightarrow a^{-1} = a^{q-2}\) (252 multiplication \(\otimes\))
 ▪ Other idea: translating \(GF(2^8)\) to \(GF((2^4)^2)\) and back
Polynomial = <primitive polynom>
def multiply(a, b):
 p = 0
 while a && b:
 if b[0]: # lowest bit
 p = p ^ a
 b = b >> 1 # divide by 2
 c = a[-1] # highest bit
 a = a << 1 # multiply by 2
 if c:
 a = a ^ POLYNOM
 return p

b a
0b100101 0b110

37 6 6*2**0 0b110
18 12
9 24 6*2**2 0b11000
4 48
2 96
1 192 6*2**5 0b11000000

222 0b11011110

Russian Peasant Multiplication

<table>
<thead>
<tr>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0b100101</td>
<td>0b110</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>18</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>1</td>
<td>192</td>
</tr>
<tr>
<td>222</td>
<td>0b11011110</td>
</tr>
</tbody>
</table>
TIE design – Multiplication

\[p = a \times b \]

Critical path:
8\((a_i \rightarrow a_{i+1}) + (a_7 \rightarrow p_7)\)
9\((\text{XOR} + \text{MUX})\)
Extention to SIMD

- Multiplication of a lot of symbols with the same coefficient
- With 128bit memory interface → 16x SIMD
- ...or 8x SIMD on 16bit calculation
Finite Fields Inversion

- Transformation from $GF((2^n)^2)$ to $GF(2^n)$
 - Homomorph for addition and multiplication
 - Using a precalculated transformation matrix based on $P(x) = x^2 + x + p_0$
 - $A(x) = a_0 + a_1x$ from $GF((2^n)^2)$
 - a_0 from $GF(2^n)$
 - a_1 from $GF(2^n)$
- Inversion: $A \cdot B = 1$
 - $b_0 = (a_0 + a_1)\Delta^{-1}$
 - $b_1 = a_1\Delta^{-1}$
 - $\Delta = a_0^2 + a_0a_1 + p_0a_1^2$
TIE design – Inversion

- Transform with matrix T
- Combine 2 $GF(2^4)$ values
 - Inversion with lookup table
- Transform with matrix T^{-1}
TIE size

• Original
 ▪ unmodified LX5

• multiplier
 ▪ Hardware multiplier

• SIMD
 ▪ 16x parallel multiplier

• FLIX
 ▪ Flix option
Speedup

• Inversion
 ▪ Compared against $a^{-1} = a^{253}$ in plain-C implementation
Energy efficiency

- ODROID UX3
- Tensilica LX5
Unrolled Multiplication

Transformed Invert

Network Coding

Any k mixtures will do

Summary

37	12
18	24
9	48
4	96
2	192
1	222