SDIP ASIC Update
Tensilica Day Hannover 2018
DCT Company Profile

Dream Chip Technologies ...

• Positioned as a Fabless Microelectronic Engineering Company for medium to large SoC designs covering the whole range from Architecture, Specification, Design, Verification to GDSII
• Technologies: 130nm, 40nm, 28nm, 22nm FDX, 14/16nm FF
• > 70 Employees/ 62 Engineers with 10 … 20 years SoC design experience
• Based in Hanover (HQ) and Hamburg, Germany
• Member of Silicon Saxony/ Germany
• Cadence Design Center Partner for Tensilica
Target Applications
MPSoC Chip Architecture
SDIP ASIC Design Flow
SDIP Verification Concept
Cadence Incisive Verification Tool Chain

• Chip-level and sub-system verification
• UVM SystemVerilog based verification environments
• Verification environment are configurable to select between usage of
 – IP “simulation models” or
 – IP RTL
• For environments hosting a processor this flexibility allows simulation running real program code or generating “directed” bus transactions.
SDIP Verification Concept
Cadence Incisive Verification Tool Chain

• Sub-system environments available for
 – Application processor unit (APU, including ARM A53)
 – Safety processor unit (SPU, including ARM Cortex R5 lockstep)
 – Digital signal processor unit (DSP, including Xtensa VP6)
 – Memory control unit (DDRC, including DDR controller and PHY model)
APU Verification Environment (Flavour A)

- Environment configured to be used on chip-level using the A53 simulation model
- A53 APB and AXI transfers driven by according UVC sequences
- Remaining sideband port are driven by sideband UVCs
APU Verification Environment (Flavour B))

- Environment configured to be used on subsystem-level using the A53 RTL
- A53 APB and AXI transfers driven C program code
- Remaining sideband port are driven by IP itself
SDIP Chip-Level Verification Environment
Dft and Backend

Cadence Genus/Modus/Innovus Backend Tool Chain
SDIP Chip: Layout Overview
Cadence Innovus Backend Tool Chain

- GF 22FDX technology
- PDK v0.5_0.1
- 12 track library
- 7885.3µm x 8001.3µm
- 10LM
- Flipchip
 - 1292 bumps
 - 405 signal IOs
 - 150um/200um pitch
- LVT/SLVT + FBB
- up to 1 GHz
- 0.8V core / 1.8V IO
SDIP Chip: Design Info
Cadence Innovus Backend Tool Chain

- ~15.6M Instances

- ~11.6mm² RAM
 - 489 insts / 7426 kBytes
 - only 9 different RAM cells

- Prepared for FBB

- Timing Optimization
 - One SDC only
 - 4 setup analysis views
 - 9 hold analysis views
SDIP Chip: Hierarchical Layout with Innovus
Cadence Innovus Backend Tool Chain

```
sdp_chip
  - ARM A53
    • 4 x A53 CPU
  - ARM R5
  - DSP
    • 4 x Tensilica VP6
  - 2 x 32bit LPDDR4
  - 5 x PLL
```
<table>
<thead>
<tr>
<th>Component</th>
<th>Runtime (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A53 CPU</td>
<td>12h</td>
</tr>
<tr>
<td>A53 Quad</td>
<td>12h</td>
</tr>
<tr>
<td>VP6</td>
<td>60h</td>
</tr>
<tr>
<td>DSP</td>
<td>30h</td>
</tr>
<tr>
<td>R5 lockstep</td>
<td>17h</td>
</tr>
<tr>
<td>SDIP chip</td>
<td>70h</td>
</tr>
<tr>
<td>total</td>
<td>160h</td>
</tr>
</tbody>
</table>

- **3 x Intel(R) Xeon(R) CPU E5-2643 v2 @ 3.50GHz (12 Cores / 256GB RAM)**
- **5 x Intel(R) Core(TM) i7-6700K CPU @ 4.00GHz (8 Cores / 128GB RAM)**
- multiple”small” machines
- organized as SunGridEngine
Static Timing Analyses

Cadence Tempus

• Hierarchical Approach
 – A53 Quad
 – DSP
 – R5 lockstep
 – SDIP chip

• 34 Scenarios

• 6h runtime / 4 DMMC Jobs
 (8 CPUs each)
Layout Verification
3rd Party Toolchain

• Cadence PVS was not qualified for signoff at TO time

• Hierarchical Approach not possible for sign-off

• High run time
 – DRC 72h (3 x 12 CPUs / > 1TB RAM)
 – LVS 3h
 – FILL 89h (runset not prepared for massive parallel computing)
Power Analyses
• Heavy computing on one A53 at 500MHz adds +90mW P(core)

• Each additional heavy computing A53 at 500MHz core adds +25mW P(core)

• Heavy computing on VP6 RISC at 500MHz adds +290mW P(core)

• Heavy computing on VP6 SIMD at 500MHz adds +975mW P(core)

• A53/VP6 RISC computing: Mersenne Twister pseudo-random number generator

• VP6 SIMD computing: Vector multiplication
Differential power analysis DDR

- One LPDDR at 1066MHz adds +715mW P(total)
- Second LPDDR at 1066MHz adds +300mW P(total)
- Using LPDDR at 1333MHz adds +150mW P(total) per controller
Differential power analysis / Demos

- Multiview application runs at +300mW P_{total}, +190mW P_{core}
- Topview application runs at +450mW P_{total}, +350mW P_{core}
- Topview computing consumes 165mW P_{core}
SDIP ES 3.0 -> 2018
Roadmap / Technology Improvements

• GF 22 nm FDSOI PDK 1.2
 – better PPA
 – use 8-track libraries
 – fix DDR phy weaknesses

• Power Management Optimization
 – restrict use of LVDS cells

• Flow
 – use new Cadence LBIST flow
 – use Cadence PVS for DRC / LVS sign-off
 – use hierarchical sign-off and fill flow
Roadmap / Features

- Replace two Vision P6 by Vision C5 Processors
- Add USB interface
- Add 2D GPU
- Minor bug fixes / improvements
Demos
Demo (Tensilica Day LUH)
Demo (In Work @ Dreamchip)
Thank You!

martin.zeller<at>dreamchip.de

Dream Chip Technologies GmbH
Steinriede 10
D-30827 Garbsen/Hannover
Germany
+49-5131-90805-167
MPSoC Chip / Starter Kit
The SIP

System-on-Module features
- 4GB LP-DDR4 3200 RAM

Interfaces
- Four 300MB/s video inputs
- One 300MB/s video output
- Gigabit Ethernet
Assembling the SOM...

Overview
• Power management and measurement
• Chip power supplies included

Benefits
• Reduced application-specific baseboard complexity
• Interfaces customizable to application requirements
4xHDMI Application Board

Overview
- DCT ADAS Quad-HDMI Base Board
- Four HDMI 1.4b inputs
- One HDMI 1.4 output
- Custom high-speed headers available

Base board features
- Video data rates up to 1080p60
- Two Intel MAX10 10M08DC FPGAs
- Four high-speed interface headers
- Video input synchronization
- True output genlock possible
Software Development Kit

Overview
- DCT ADAS Software Development Kit
- LEDE distribution with stable Linux 4.4.42
- 32-bit and 64-bit flavors available
- Tensilica LX7-IVP6 development support
- Kernel API drivers

SDK features
- video framework
- Tensilica LX7-VP6 support