
What can TIE do for you ?

Marcus Binning, Senior AE Manager, Europe (marcusb@cadence.com)
43276169 User Day
Hanover
Feb 9th 2016

2 © 2016 Cadence Design Systems, Inc. All rights reserved.

Agenda

• Overview

• Building Hardware and architectures

• Integrating into the target toolchain – SW aspects of TIE

• Tools to help you

• Summary

3 © 2016 Cadence Design Systems, Inc. All rights reserved.

Overview

4 © 2016 Cadence Design Systems, Inc. All rights reserved.

TIE does not stand alone
Part of the Xtensa Configurable Processor Concept

Tensilica

Customer

Base Processor
Example controller templates

Pre-verified Options
Off-the-shelf DSPs, Interfaces,

Peripherals, Debug, etc.

Application Based
Choose a processor template

Optional Customization
With pre-verified options and/or

create your own

Every Tensilica processor

shares the same base

Xtensa instruction set

Complete Hardware Design

Pre-verified

RTL

EDA scripts

Test suite

Advanced Software Tools

IDE

C/C++ compiler

Debuggers

Simulators

RTOSes

Iterate in

minutes!

5 © 2016 Cadence Design Systems, Inc. All rights reserved.

Fusion
IoT/Multi Purpose

• Scalable DSP

• Always-alert

• Sensor

processing

• Audio/Video/Spee

ch

• Comm’s/Security

HiFi
Audio/Voice/Speech

• Encode & Decode

• Voice trigger

• Noise Reduction

• Post-Processing

• 150+ Codecs

ConnX
Communications

• Narrow to wide

band Wireless

• LTE/LTE-A, WiFi,

Smart Grid

• Infrastructure &

Terminals

Vision
Computer

Vision/Imaging

• Image processing

and analytics

• Video Pre- Post

Processing

Custom ISA
Application Specific

• High Performance

• Energy efficient

• Application

specific data

types

Tensilica Scalable Product Portfolio

Control Processor
Energy & area efficient – the foundation of all Tensilica processors

Tensilica Optimization Platform
Common Development Tools and 3rd Party Ecosystem

Wide range of DSPs Custom

Providing the Most Efficient Processors in Multiple Markets
IoT, Mobile Phones, Storage/SSD, Networking, Video, Security, Cameras, Watches, Printers...

Thousands

of designs

2B+ Cores

per Year

6 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Cycle counts – the higher the longer it takes to complete
– Targeting the right instructions crucially important

• Sufficient local storage
– Access to registers very low energy cost. Insufficient registers can be a major efficiency loss

• Efficient Memory System
– This varies greatly from system to system

– With large software sets, a sophisticated cache based system may be appropriate
– Support for Prefetch of Instructions and/or Data may be beneficial

– With self-contained very small, low power systems the complete opposite may apply.
– Local tightly coupled memory may be appropriate

• Efficient Architecture must span all these
– (and more, of course – debug, trace ..)

What affects the efficiency of Software ?

7 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Abstract
– Don’t need detailed knowledge of how processors work

– Many choices can be made using a mouse (pick from menus)

– High level language (called TIE) used to express processor functionality
– Available to end users

• Automated
– Processor build is completely automated

– Hardware (RTL) and software tools/models all created at the same time
– Ensures consistency, eliminates need for user to verify e.g. ISS vs RTL

– Extremely rich set of tools, libraries etc

• Powerful
– Very wide range of architectural features can be added/modified

Important Concepts about Xtensa + TIE
Adapting the Core to the need, not the need to the core ..

8 © 2016 Cadence Design Systems, Inc. All rights reserved.

What can be customised ?

• The Instruction set .. Huge range of options
– Use a pre-defined one, or write your own. Could be 100’s of new instructions

• The Register File infrastructure
– Many DSP cores have different data types – Audio samples, vectors of complex numbers –

each needs different local storage.

– Choices are (almost) unlimited in regfile width and depth

• Memory System
– Access width to memory (up to 512 bits per load/store unit)

– Caches, scratchpad memory, Prefetch, Multiple LoadStore units

• Interfaces – Create new “HW” interfaces
– Different styles (FIFO, “lookup”, simple registered Wires)

– Can be WIDE (up to 1024 bits each)

– Can be PLENTIFUL (up to 1024 interfaces)

9 © 2016 Cadence Design Systems, Inc. All rights reserved.

Many Different Architectures Possible
Engineers come up with different solutions to similar problems

• Only Xtensa offers this range of
options and flexibility in choices

• Customers can further extend,
customize to their specific cost,
performance requirements

• One single unified tool set for all

Offload

Accelerators

Small, programmable

DSP (customer

customized)
with RTL accelerators

Deeply integrated Task

Engines
(Xtensa performs specific

task, HW developer creates

FW to operate)

ConnX BBE DSPs

HiFi Family

Audio DSPs

10 © 2016 Cadence Design Systems, Inc. All rights reserved.

Instruction

Fetch / Decode

Base ISA

Execution

Pipeline

Base Register File

Data

Load/Store Unit

Base ALU

Optional

Function Units & I/O

Processor Controls

Interrupt Control

Instruction Memory

Interfaces

Data Memory Interfaces

Xtensa LX6 Block Diagram

Base ISA Feature

Pre-Designed Options

Designer-Defined Features (TIE)

On-Chip Debug Control

Data / Instruction

Watchpoint Registers

Timers

Real-Time Trace

JTAG/APB Access Port

Performance Monitor

Loop

Buffer

Designer-Defined Data

Load / Store Unit

Designer-Defined

Function Units & I/O

System Bus Interface

System Bus

PIF, AHB, AXI

Prefetch

Write Buffer

Local

RAM

ROM I Cache

I MMU

Local

RAM

ROM

D Cache

D MMU

Designer-Defined

FLIX N-Way

Parallel Execution Pipelines

ISA

Extensions
Designer-

Defined ISA

Register Files

Processor State

Register Files

Processor State

QueuesFIFO

Lookups

Ports

Lookup

Table

…

I/O Interfaces

11 © 2016 Cadence Design Systems, Inc. All rights reserved.

QueuesFIFO

Lookups

Ports

Lookup

Table

…

I/O Interfaces

Xtensa LX6 Block Diagram

Instruction

Fetch / Decode

Base ISA

Execution

Pipeline

Base Register File

Data

Load/Store Unit

Base ALU

Optional

Function Units & I/O

Processor Controls

Interrupt Control

Instruction Memory

Interfaces

Data Memory Interfaces

On-Chip Debug Control

Data / Instruction

Watchpoint Registers

Timers

Real-Time Trace

JTAG/APB Access Port

Performance Monitor

Loop

Buffer

Designer-Defined Data

Load / Store Unit

Designer-Defined

Function Units & I/O

System Bus Interface

System Bus

PIF, AHB, AXI

Prefetch

Write Buffer

Local

RAM

ROM I Cache

I MMU

Local

RAM

ROM

D Cache

D MMU

Designer-Defined

FLIX N-Way

Parallel Execution Pipelines

ISA

Extensions
Designer-

Defined ISA

Register Files

Processor State

Register Files

Processor State

MAC 16 DSP

Register Files
Processor State

MUL 16/32
Integer Divide

Single Precision
Floating Point

Double Precision
Floating Point

32-bit GPIO pair
(GPIO32)

32-bit Queue Interface
pair (QIF32)

HiFi Audio DSP

IVP32EP Imaging Engine

ConnX D2 or Vectra DSP

ConnX BSP, SSP or Turbo Engines

FLIX3 (3-issue FLIX configuration)

Optional
Functional

Units
Choose pre-verified

functionality

Click-box options
and side-by-side

profiling allow easy
“what-if”

assessments

ConnX BBE Series Baseband DSPs

Optional

Function Units & I/O

Base ISA Feature

Pre-Designed Options

Designer-Defined Features (TIE)

12 © 2016 Cadence Design Systems, Inc. All rights reserved.

QueuesFIFO

Lookups

Ports

Lookup

Table

…

I/O Interfaces

Xtensa LX6 Block Diagram

Instruction

Fetch / Decode

Base ISA

Execution

Pipeline

Base Register File

Data

Load/Store Unit

Base ALU

Optional

Function Units & I/O

Processor Controls

Interrupt Control

Instruction Memory

Interfaces

Data Memory Interfaces

On-Chip Debug Control

Data / Instruction

Watchpoint Registers

Timers

Real-Time Trace

JTAG/APB Access Port

Performance Monitor

Loop

Buffer

Designer-Defined Data

Load / Store Unit

Designer-Defined

Function Units & I/O

System Bus Interface

System Bus

PIF, AHB, AXI

Prefetch

Write Buffer

Local

RAM

ROM I Cache

I MMU

Local

RAM

ROM

D Cache

D MMU

Designer-Defined

FLIX N-Way

Parallel Execution Pipelines

ISA

Extensions
Designer-

Defined ISA

Register Files

Processor State

Register Files

Processor State

Customization

• Multi-issue FLIX
(automatically used by the C
compiler)

• SIMD Instructions

• Compound and Fusion
Instructions

• Multi-Cycle Execution Units

• Registers / Register Files with
automatic C data-type
support

• GPIO and Queue Interfaces

• Lookup Interfaces

• Wide (512-bit) load/store
instructions

Designer-Defined

Function Units & I/O

Base ISA Feature

Pre-Designed Options

Designer-Defined Features (TIE)

13 © 2016 Cadence Design Systems, Inc. All rights reserved.

Building Hardware and Architectures

14 © 2016 Cadence Design Systems, Inc. All rights reserved.

TIE is a very abstract language

• Don’t need to worry about too many low level details
– How does my new instruction get encoded ?

– How does my new instruction get interfaced to the pipeline ?

– Will my new multi-cycle instruction work if it is interrupted half way through calculation ?

• Answer to all these is … “Don’t worry, the tools handle it for you” !
– (Well, technically it might be “It’s done by a combination of the Xtensa architecture and the TIE

compiler” but that is not so snappy)

• In TIE you describe things at a pretty high level
– You have the option of specifying things more explicitly

– E.g. encoding, specifying fields in the instruction word, you can describe your clever 11x17 multiplier at a very low
level ..

– Normally handled much better by the TIE compiler.
– There are a number of “pre-built” parameterisable datapath modules available

15 © 2016 Cadence Design Systems, Inc. All rights reserved.

Useful constructs for building Hardware

• “Functions” – create hardware templates that increase readability, and re-use

• Semantics – create hardware shared between different operations
– E.g. “expensive” hardware like multipliers and large adders/shifters

– Common in complex DSPs to have many 10’s of flavours of multiplies

16 © 2016 Cadence Design Systems, Inc. All rights reserved.

Hardware Construction in TIE
Suggested flow

• Create atomic operations first

• Decide if we need additional local storage (register files, state)
– May be able to re-use existing register files

• Decide which operations should share hardware

• Decide whether we want a single issue machine or multi-issue
– Increase software performance by issuing multiple instructions at the same time (“VLIW”)

• Create the multi-issue machine
– This uses FLIX –”Flexible Length Instruction eXtensions”

• Create new interfaces if you need them

• Some examples follow
– As an example we add some “population count” instructions to the Fusion core

17 © 2016 Cadence Design Systems, Inc. All rights reserved.

Operations

• Note use of functions to aid readability
– In this case the input operands come from an existing register file “AD_DR” that is defined in

the Fusion ISA

18 © 2016 Cadence Design Systems, Inc. All rights reserved.

Semantic

• Simple way to share hardware required for several instructions
– Can also be multi-cycle

19 © 2016 Cadence Design Systems, Inc. All rights reserved.

Creating multi-issue machines

• Example of simple “VLIW” machine creation

• In reality things are much more complex
– Can have multiple “format” declarations very flexible machines

• TIE Compiler “wires up” all the hardware for you

myflix.tie

format myflix1 64 {slot_a, slot_b, slot_c}

slot_opcodes slot_a {L32I, S32I}

slot_opcodes slot_b {ADDI}

slot_opcodes slot_c {ADD, SRAI}

64-bit FLIX instruction
format with three slots

Each slot is given a
unique name

List of operations

that can execute in
“slot_c”

20 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Use optimized Xtensa processors instead of RTL for new blocks

– Reduce the verification effort and time

– Replace the hardware control FSM with software on the processor

– Get automatic RTL generation with fine-grained clock gating

– Reprogram processor to adapt to upgrades and bugs in algorithms

• Create data paths similar to hardwired RTL data paths – really!

– Multi-cycle, complex functional units

– Custom, high bandwidth data/control connections to other blocks with predictable latencies

– Automatic generation of pre-verified RTL

– Verify only the input-output relationship on the interfaces

Xtensa Processors
…as RTL or Finite State Machine (FSM) Replacement

DataPath DataPathDataPath

Xtensa LX

System Bus

Control, Status, Data

Bus I/F

Control, Status, Data

Bus I/F

Control, Status, Data

Bus I/FBus I/F

DataPath

In RTL designs more than 90%

of the bugs that cause re-spins

are in the 10% of logic found in

hard-wired control FSMs.

Use programmable Xtensa

processors to reduce re-spins!

21 © 2016 Cadence Design Systems, Inc. All rights reserved.

SW Aspects of TIE

22 © 2016 Cadence Design Systems, Inc. All rights reserved.

SW Aspects of TIE extremely important
The domain of the “proto”

• Create the programming model for the user

• We recommend using ‘C’ (or C++ if you prefer) for target code (no asm!)

• New types defined to represent “real world” data
– Vectors of complex numbers, vectors of audio data

• Compiler can be “taught” how to handle these new types
– How to load/store/exchange them in the regfile

– How to do pointer casting, and pointer arithmetic

– How to do type conversions

– How to do operator overloading * + - << >> > < >= etc

• Sometimes you need to use “intrinsics”
– Direct calling of individual operations or sequences – to simplify things

• Example follows – using BBE32EP as the processor

23 © 2016 Cadence Design Systems, Inc. All rights reserved.

Source Code
#ifdefs are folded by Xplorer for clarity

24 © 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Confidential

• Compile time constant indicates certain features are
available
 In this case there are specific peak search instructions which speed

up the algorithm

• Declaration uses standard 'C' types
 Makes it easy to test with pure 'C' implementations - any cast to

machine specific types done inside function

 Use of __restrict same as normal 'C' (== no pointer aliasing)

• New vector types specific to BBE32EP
 Type xb_vecNx16 is a vector of 16bit quantities

 In this machine 'N' == 16 so data_ptr is a pointer to 32B items

• Compiler is 'taught' through TIE how to do pointer
casting, arithmetic etc

• Declare some local variables
 Scope rules exactly the same as 'C'

 Type xb_vecNx40 is a 16-way vector of 40bit "accumulator" values

• Variable initialised to zero across all lanes
 What is not explicitly shown is the type conversion from "int" (a

constant, in this case '0' is always a 32-bit value in the Xtensa
architecture) to xb_vecNx16. This has been defined in TIE to
replicate the value across all lanes.

 Clearer would be "xb_vecNx40 normAccum = (xb_vecNx40) 0 ;"

Source Code - Explained (part 1)

25 © 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Confidential

• Use of an intrinsic
 BBE_SEQNX16() is an atomic operation that initialises a vector to

0,1,2,3 ... 15 across it's lanes - very handy sometimes

• This pragma helps the compiler with code generation
 If we know something about the loop iterations, then we can let the

compiler know, in this case we don't bother with odd numbers or 0,1
so the loop preamble/cleanup code will be smaller

• Start of a loop
 The compiler will decide whether it can infer a xero overhead loop

(in this and most cases, "yes"). No need for user to consider
whether it can or not.

• We don't explicitly use loads
 Compiler knows how to compute array offsets for data_ptr which

is a pointer to xb_vecNx16[]. It will automatically schedule loads
according to use in the loop, number of unrolls, register pressure etc

• This is a specific intrinsic which maps to one operation
that calculates magnitude2 of a vector of N complex
 N complex requires 2N real values

 Compiler will actually decide which registers are used

• The '+' operator is overloaded (through TIE) to be a
vector add of xb_vecNx40 elements in this case
 Could have been written as "normAccum += wvec0 ;"

 Same thing to the compiler

Source Code - Explained (part 2)

26 © 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Confidential

• Two atomic operations here
 The multiply '*' is on xb_vecNx16 types

 BBE_PACK* does a shift-round of 40-bit values to produce 16-bit

 The add '+' is on xb_vecNx40 types (multiply using '*' generates
full-precision 40-bit results)

 The compiler 'knows' that a multiply followed by and add can be
represented by an appropriate "MAC" instruction

 The compiler is taught through TIE how to handle ALL of the above
scenario and infers BBE_MULA* (MAC) instructions

• Each lane of seqInd is incremented by SIMD_N
 As before, specific type conversion from int xb_vecNx16 is

done with a cast

 SIMD_N is constant 16 in this case. seqInd is therefore a running
index of the current 16 complex vectors being processed in the loop

 normAccumW is a weighted normalised value

• This is a specific operation that computes the highest
two peaks, lane-by-lane
 It has it's own private storage not visible to the compiler

 Reduction processing is done after the loop

 Shown in next slide

Source Code - Explained (part 3)

27 © 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Confidential

• This is a "reduction" operator
 i.e. it works across the vector - adding up all 16 40bit values and

placing the result in the LS Lane

• This is simple integer division

• This is a Boolean type
 Type vboolN is a vector of 16 Boolean values

 Used for all sorts of comparison, and predicated operations

• Computes the final max value and index

• This special intrinsic moves data between the "private"
DUAL PEAK SEARCH registers
 The "T" suffix means "Move the 'true' lanes" where the Boolean

variable provides the predicate values

 There are also predicated versions of MOST basic operations - ALU,
MAC, MOV etc

• BBE_SEL* operations are "select" operations
 Wide range of data shuffling available on both special regsiters and

the general purpose registers. This is on the private registers

Source Code - Explained (part 4)

28 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Source code is quite "boring"
– Few hints of the complexity of the underlying machine

– No need to annotate the source code to indicate what the programmer thinks may be
opportunities for Instruction Level Parallelism (ILP), loop unrolling etc

– Yes, we can control the compiler with switches, but we don't need to put a lot of annotations in the source code

• No need to explicitly use instructions / intrinsics everywhere
– In actual fact, most of the time you can let the compiler do all loads/stores, and many "simple"

operations like +-*/ >> << > < & | ^ ...
– They are all "overloaded" for many types through the TIE language

– The source code is still pretty readable, and if we compile for Debug (no optimisation) we can
easily step through and do source level debugging

• Use of "N-way" types and intrinsics means code is basically portable to other
members of the BBE*EP family with different "N" (e.g. BBE64EP has N==32)

• When compiling with higher optimisation, the compiler will effectively software
pipeline according to the architecture (next couple of slides)

Notes

29 © 2016 Cadence Design Systems, Inc. All rights reserved.

• In the next slides you will see the actual assembly code generated by the compiler

• Note that there are many lines of the form:
– { op1 ; op2 ; op3 ; op4 }

• These are called "FLIX bundles" (or "FLIX packets") and represent a single cycle
issue of multiple atomic operations (op1 .. op4 in this case)

• The operations can have different total latencies

• They all enter the various pipelines together

• They do not interact with each other except through architectural state
– This means it's possible to trace loop iterations as no "hidden data paths" exist from intra-stage

flops

– This is a central concept of Xtensa

– Provides "safe" operation
– The hardware may insert a bubble if there is a data hazard - but the compiler will try to avoid these with loop

unrolling and careful software pipelining.

Body of the Loop after compilation - Notes (i)

30 © 2016 Cadence Design Systems, Inc. All rights reserved.
Cadence Confidential

• Code before the loop is not shown for brevity - basically part of the first iteration is outside to "prime the pipeline"

• 3 Instructions before the loop - 2 scalar, 1 "FLIX" which contains 2 loads (to each loadstore unit)

 Low order address interleaving means there will be no contention and no stall

• Zero over head loop instruction - sets up some specific hardware registers to control instruction fetch

 No branch penalties when executing the code between 0x4000a600 and 0x4000a636 inclusive

• We can see by the two uses of "BBE_MAGINX16C" that the loop has been unrolled by factor 2

• We can also see that the loop is resource bound in the "MAC" slot

 There are limits to the number of copies of large datapaths in the machine (user choice == CDNS choice here!)

 Compiler cannot do any better

Body of the Loop after Compilation

4000a5eb addi a3, a5, -2

4000a5ee or a11, a2, a2

4000a5f1 { bbe_lvnx16_i v5, a2, -32; bbe_lvnx16_i_n v6, a2, -64; bbe_maginx16c wv0, v6, v8; nop }

4000a5fd loopgtz a3, 4000a63c <bbe_dualpeak_mag_32b+0xcc>

4000a600 { bbe_lvnx16_i v5, a11, 96; bbe_lvnx16_i_n v6, a11, 64; bbe_maginx16c wv3, v5, v6; bbe_packsnx40 v1, wv3 }

4000a60c { bbe_addnx16 v3, v4, v7; bbe_lvnx16_i_n v0, a11, 32; bbe_mulanx16 wv2, v3, v2; bbe_dualmaxuwnx32 wv0, 0 }

4000a618 { bbe_lvnx16_ip v1, a11, 128; bbe_packsnx40 v2, wv0; bbe_mulanx16 wv2, v4, v1; nop }

4000a624 { nop; nop; bbe_addnx40 wv1, wv1, wv0 }

4000a62a { bbe_addnx16 v4, v3, v7; nop; bbe_maginx16c wv0, v0, v1; bbe_dualmaxuwnx32 wv3, 0 }

4000a636 { nop; nop; bbe_addnx40 wv1, wv1, wv3 }

4000a63c { nop; bbe_packsnx40 v12, wv3; bbe_maginx16c wv3, v5, v6; nop }

31 © 2016 Cadence Design Systems, Inc. All rights reserved.

Tools to help you

32 © 2016 Cadence Design Systems, Inc. All rights reserved.

Several specific tools to help develop TIE code

• TIE compiler
– Does all the “heavy lifting” transforming your abstract TIE code into real Hardware and

extensions to the basic software toolchain

– Fast, efficient, reliable.

– Generates reports which reveal a lot of detail about your design

• ‘C’/C++ Compiler
– Can utilise complex machines very well, and allow you to program in a high level language

• Xplorer
– GUI environment which can be used to front-end the tools

– Debug the “hardware” of your TIE in a “software” environment
– TIE wires view in the debugger can annotate the wires of your instructions/semantics as you step through your

source code

– Utilise “TIEprint” statements in your TIE code – “embedded printf in TIE”. Does not create
hardware (just a simulation artefact) – very handy for tracking corner case bugs

– Profiling tools – easily spot “non-efficient” pipelining of TIE instructions using the pipeline view

33 © 2016 Cadence Design Systems, Inc. All rights reserved.

Debug View - TIE Wires

34 © 2016 Cadence Design Systems, Inc. All rights reserved.

Profile View – Pipeline Window

35 © 2016 Cadence Design Systems, Inc. All rights reserved.

To Summarise

36 © 2016 Cadence Design Systems, Inc. All rights reserved.

Summary of Xtensa + TIE development platform

• It’s a basic ISA and set of tools that allows:
– Fast creation of novel architectures

– Complete toolchains and models “correct by construction” in an hour

– Powerful development tools

– Wide range of architectural features that can be included in the design

• Create wide range of cores from “Almost HW” to “Sophisticated General Purpose
DSPs” ….

– Calling at all intermediate stops on the way

• It’s Fast and Easy to understand and use –
– No difficult languages to learn, everything looks “pretty familiar”

37 © 2016 Cadence Design Systems, Inc. All rights reserved.

Thank you for listening

