
Xtensa + TIE Feature Update
To RF.3 release – some key points of my choice 

Marcus Binning, Senior AE Manager, Europe (marcusb@cadence.com)
Tensilica User Day
Hanover
Feb 9th 2016

2 © 2016 Cadence Design Systems, Inc. All rights reserved.

Agenda

• Overview

• Memory System

• TIE

• Tools / Debug

3 © 2016 Cadence Design Systems, Inc. All rights reserved.

Overview

4 © 2016 Cadence Design Systems, Inc. All rights reserved.

Overview of features up to Release RF.3

• Not going to identify features by release, just where things stand today
– The release notes will tell you when things were introduced

• We will cover some key (new) TIE language features

• First will cover some of the major “other” pieces of the Xtensa architecture

• NOTE – This talk will concentrate on GENERIC features, and will not describe all
the DSP ISAs currently available

– Lots of information on http://ip.cadence.com/ipportfolio/tensilica-ip

• Conceptually – LX6 is a development of all the LX that went before
– No MAJOR discontinuities …. Yet 

http://ip.cadence.com/ipportfolio/tensilica-ip

5 © 2016 Cadence Design Systems, Inc. All rights reserved.

Memory System

6 © 2016 Cadence Design Systems, Inc. All rights reserved.

Xtensa Architecture:
Local Memory Subsystem

ALU

Instruction Fetch and Decode

Register File

Base Execution
Pipeline

SPFPU, DPFPU

MUL16/32, MAC16,

NSA, MIN,MAX, etc

Additional ISA

DROM

IROM0

Master

Interface

Slave

Interface

PIFECC/

Parity

Prefetch

Unit

I-
F

e
tc

h

B
u

ff
e

r

IRAM0

LD/

ST0

DRAM0

.

. . . .

N-issue FLIX parallel
pipelines

. . . .

DMA

SDRAM

Dev B

Dev A

System Bus

A
X

I\
A

H
B

-l
it

e

B
ri

d
g

e

Optional Function

Configurable Function

Base ISA Feature
Optional & Configurable

Designer Defined Extensions

External RTL & Peripherals

Memories & Caches

LD/

ST1

E
x

e
c

u
tio

n
 U

n
its

, R
e
g

is
te

r

F
ile

s
 a

n
d

 In
te

rfa
c

e
s

E
x

e
c

u
tio

n
 U

n
its

, R
e
g

is
te

r

F
ile

s
 a

n
d

 In
te

rfa
c

e
s

Local Memory

Subsystem

7 © 2016 Cadence Design Systems, Inc. All rights reserved.

Xtensa Architecture:
Dual Load/Store and Banking

ALU

Instruction Fetch and Decode

Register File

Base Execution
Pipeline

SPFPU, DPFPU

MUL16/32, MAC16,

NSA, MIN,MAX, etc

Additional ISA

Optional Function

Configurable Function

Base ISA Feature
Optional & Configurable

Designer Defined Extensions

External RTL & Peripherals

Memories & Caches

S
to

re

B
u
ff
e
r

I-
F

e
tc

h

B
u

ff
e

r

IRAM0

LD/

ST0

DRAM0
Data

Cache

LD/

ST1 S
to

re

B
u
ff
e
r

Instruction

Cache

PIF
DMA

SDRAM

Dev B

Dev A

System Bus

Local Memory with

Dual Load/Store

and Banking

.

. . . .

N-issue FLIX parallel
pipelines

. . . .

E
x

e
c

u
tio

n
 U

n
its

, R
e
g

is
te

r

F
ile

s
 a

n
d

 In
te

rfa
c

e
s

E
x

e
c

u
tio

n
 U

n
its

, R
e
g

is
te

r

F
ile

s
 a

n
d

 In
te

rfa
c

e
s

8 © 2016 Cadence Design Systems, Inc. All rights reserved.

Parallelize Memory Accesses with Dual Load/Store

• Requires FLIX instruction to fully utilize dual Load/Store

LS Unit
0

DRAM
0

Requires Dual Ported Memories

LS Unit
1

• C-Box is an “arbiter-mux”

– Multiple cycles are needed to satisfy
multiple requests, if they are going to
the same DRAMx address space

– Loss some of FLIX efficiency when
multiple Load/Store target same Data
RAM

LS Unit
0

LS Unit
1

C
-
B
O
X

DRAM
0

Configuration with C-Box 

no dual ported memory required

9 © 2016 Cadence Design Systems, Inc. All rights reserved.

Data Banking Example with Two Banks

Bank Data

…000 0 0

…001 0 2

…002 0 4

…003 0 6

… 8

Bank 0 Bank 1
Bank Data

…000 1 1

…001 1 3

…002 1 5

…003 1 7

… 9

External

address to

bank0

External

address to

bank1

Data WidthAddress

031

Bank Select

10 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Configuration requirements
– Must be a write-back D-cache

– Must have at least 2 banks

– Must have early restart (will be explained later)

• Each L/S Unit has its own copy of the DTag RAM.
– Two simultaneous requests to different addresses require two DTag lookups for parallel access

– DTag RAMs are written with the same data.

Two Load/Store Units with Data Cache

11 © 2016 Cadence Design Systems, Inc. All rights reserved.

DCache with Banking

Bank

…0000 0 Cache line 0, way 1

…0001 0 Cache line 1, way 1

…0002 0 Cache line 2, way 1

…0003 0 Cache line 3, way 1

… 0 Cache line 4, way 1

Bank

…0000 1 Cache line 0, way 1

…0001 1 Cache line 1, way 1

…0002 1 Cache line 2, way 1

…0003 1 Cache line 3, way 1

… 1 Cache line 4, way 1

Bank

…0000 0 Cache line 0, way 0

…0001 0 Cache line 1, way 0

…0002 0 Cache line 2, way 0

…0003 0 Cache line 3, way 0

… 0 Cache line 4, way 0

Bank

…0000 1 Cache line 0, way 0

…0001 1 Cache line 1, way 0

…0002 1 Cache line 2, way 0

…0003 1 Cache line 3, way 0

… 1 Cache line 4, way 0

Way 1

Way 0

Cache-lines of one way are spread over multiple banks

 Parallel access of values in the same cache line

Benefits:

• Cache lines are loaded to smaller memories

• Software accesses only the bank it needs

12 © 2016 Cadence Design Systems, Inc. All rights reserved.

 Memory protection available for Caches (tag and data) and local RAM (DataRAM and
InstRAM)

 Can configure the memory error method for Instruction Side and Data side separately

 Error Correction

− Correct single bit memory errors “on-the-fly”.

− Correctable error will trigger a replay of the memory access with the corrected value

− Xtensa does not write the error-corrected data back to the memory

Uncorrectable Error  ECC double bit error or Parity errors will trigger exceptions

Memory Type Parity ECC

Data Memories 1 bit per Byte 5 bits per Byte

Data Caches 1 bit per Byte 5 bits per Byte

Instruction Memories 1 bit per 32 bit word 7 bits per 32 bit word

Instruction Caches 1 bit per 32 bit word 7 bits per 32 bit word

Instruction and Data

Cache tag array

1 bit per tag 7 bits per tag

Memory Errors and ECC

13 © 2016 Cadence Design Systems, Inc. All rights reserved.

• The Processor Interface (PIF) protocol is a high bandwidth, full duplex system
interconnect protocol

• PIF Port
– Reads and write accesses are never speculative

– Recommended interface for memory that require additional wait states

• PIF is a configuration option
– If Cache is configured, PIF is required

– If Inbound PIF is configured, PIF is required

• PIF is fully mapped to Xtensa’s 4Gbyte address range, excluding address ranges of InstRam,
InstRom, DataRam, DataRom and XLMI,

• PIF additional optional features to decrease cache miss latency

– Critical word first

– Early Restart

– Prefetch

PIF on Xtensa

14 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Split transaction interface
– Separate Request & Response Channels

– Master arbitrates for request channel

– Slave arbitrates for response channel

• Simple flow-control for request and response
– Initiator: Valid

– Receiver: Rdy

– When both Valid and Rdy are asserted at rising edge of CLK, a transaction completes

• Supports multiple outstanding requests
– Responses can be out of order

– 6-bits transaction ID used by requestor

• Write response for writes can be configured to identify bus data or address errors
– 16 unique IDs to allow up to 16 write outstanding write responses

– To ensure read/write memory ordering and synchronization use memw instruction

 Xtensa stalls when memw is executed until all outstanding write responses have returned

PIF Protocol - Basic

15 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Problem: long cache miss latency

– Xtensa pipeline will replay and then stall during cache miss

– It may take many cycles to load a cache line from system memory

– Load miss or Instruction Fetch miss waits for PIF block read response

– Need to load many values stored in contiguous addresses

• Solution: cache Prefetch option
– Prefetch additional cache line(s) from contiguous addresses ahead of a cache miss

– Prefetch hardware Identifies a stream

– Requires Data cache; Instruction cache is optional

– Additional Cache lines are Stored in Prefetch Buffer

• Benefit: Miss penalty for long (50-100 cycles) system memory latency is reduced

Cache Prefetch: Overview

16 © 2016 Cadence Design Systems, Inc. All rights reserved.

Hardware Prefetch Modes

Prefetch

Control

Nibble Value

“Stream Detected”

when a cache miss

occurs and …

Additional cache

lines prefetched,

when no stream

is detected

Additional cache

lines prefetched,

when stream is

detected

*Maximum

Number of

buffer

entries per

stream

0x0 - none (disabled) none (disabled) -

0x4 Hit in Prefetch Buffer

OR detected using

Miss History Table

none 2* 2

0x5 Hit in Prefetch Buffer 1* 2* 2

0x8 Hit in Prefetch Buffer 2* 4* 4

– Prefetch Buffer (SRAM) is outside of the Xtensa core

– Buffer size configurable to 8 or 16 entries, of Cache Line size

– Hardware Prefetch mode is controlled with the PREFCTL register

InstCtl DataCtl

31 0347

reserved

8PREFCTL Register

17 © 2016 Cadence Design Systems, Inc. All rights reserved.

Example of “Mode 0x4” Prefetch Algorithm (Animated)

Xtensa

Prefetch Buffer

PIF

Prefetch Logic

DCache

cacheline a+2

DTag

C
a
c
h
e
 C

o
n
tr

o
l

cacheline a

cacheline a+1

cacheline a+2

cacheline a+3

Request a

Request a+2

Request a+1

Request a+3

ER MI W

Request a+4

Miss History Table

Miss a

Miss a+1

STREAM!

18 © 2016 Cadence Design Systems, Inc. All rights reserved.

Why Prefetch direct to L1 ?

Assume for example 64-bit wide cache, and a 64-byte cache line

 Takes 8 cycles to move 1 cache line from Prefetch to L1

 Benefit: Prefetch to L1 increases performance for

lower latency (1-20 cycles) system memory

accesses, but might thrash the cache

Xtensa

Prefetch Buffer

PIF

Prefetch Logic

DCache

cacheline a+2

DTag

ER MI W

C
a
c
h

e
 C

o
n

tr
o

l

cacheline a
cacheline a+1
cacheline a+2

cacheline a+3

HIT in Prefetch!

Request a

Request a+2

Request a+1

Request a+3Miss History Table

Miss a

Miss a+1

Move data from Prefetch

Buffer to Cache takes

multiple cycles

19 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Three prefetch types, one objective: avoid or
reduce cache-miss latency

• All types use the same prefetch hardware
– HW Prefetch

– Automatically initiate prefetch upon stream detection or cache miss.

– Predictive hardware prefetching of instruction and data

– Alleviates penalty associated with large external memory latencies

– SW Prefetch

– User’s software program initiates Prefetch

– Prefetches single data cache-line into L1-Data Cache or Prefetch
buffer.

– Block Prefetch: New Feature

– User’s software initiates Prefetch

– Allows prefetch of a block of data spanning multiple cache-lines

– Block prefetches can be grouped and queued in user software

– User can limit number of Block prefetch upgrade requests

Prefetch types in LX6 core

20 © 2016 Cadence Design Systems, Inc. All rights reserved.

Prefetch HW

Xtensa

Prefetch Buffer

PIF

Prefetch LogicDCache

C
a
c
h
e
 C

o
n
tr

o
l

cacheline a

cacheline a+1

cacheline a+2

ER MI W

Miss History Table

Prefetch Entry 0

Prefetch Entry 1

Prefetch Entry N-1

Configuration Dependent:

8 or 16 Entries

Pref & Modify Prefetch Entry 0

Pref & Modify Prefetch Entry 1

Dedicated special entries

for “Prefetch & Modify”

category Block prefetch

ICache

Blk_Prefetch Entry 0

Blk_Prefetch Entry 1

Blk_Prefetch Entry 7

Block prefetch buffer:

Entries: 8

Max # of entries: limit

entries for block prefetch

upgrade requests:

software programmable

21 © 2016 Cadence Design Systems, Inc. All rights reserved.

• Operations - supported by XTHAL APIs
– Load a block of data into the L1 data cache (upgrade)

– Write back (Castout & invalidate) a block of data from the L1 data
cache (downgrade)

– allocate a block in the L1 data cache whose content to be modified,
without reading memory (Prefetch and modify upgrade)

– cache block operations: cancel, wait, abort, start new group

• User needs to initiate the block prefetch of a data block in
advance

– Block prefetch can eliminate cache misses (both in the normal case
and in the “prefetch and modify”). Make sure to enable DL1 option
(prefetch to L1 DCache) in PREFCTL register.

– In the case of certain cache line allocation conflicts with the
Load/Store units, the prefetch logic can choose to keep the prefetch
response data in the prefetch buffer. Such prefetched data will be
brought to L1 cache when the actual data cache miss occurs.

Block Prefetch Operations

22 © 2016 Cadence Design Systems, Inc. All rights reserved.

#include <xtensa/core-macros.h>

test_fun(u8 *pdest, u8 *psrc) {

u32 size = 1024; // 8 lines of 128 bytes each

// reserve 8 entries for block prefetch, Inst/Data Ctl: Prefetch 2 lines on stream

detect

xthal_set_cache_prefetch_long (XTHAL_PREFETCH_BLOCKS(8) | XTHAL_DCACHE_PREFETCH_MEDIUM |

XTHAL_ICACHE_PREFETCH_MEDIUM | XTHAL_DCACHE_PREFETCH_L1);

/*- - - - - other code here - - - - - */

xthal_dcache_block_prefetch_for_read_grp (psrc, size); // Group prefetch

begins

xthal_dcache_block_prefetch_modify (pdest, size) // prefetch & modify; no PIF

read.

/*- - - - - other code here - - - - - */

memcpy(pdest, psrc, size); // 1024 bytes copy

/*- - - - - other code here - - - - - */

Memory copy example

Prefetch and modify !
No PIF request, no refill to L1 cache.

Just request an L1 Cache allocation

Begins block prefetch

and groups the

subsequent block

prefetch requests

Assuming config has:
• Total 16 prefetch entries

• Cache line size is 128 bytes

• Allocate 8 entries for block prefetch

23 © 2016 Cadence Design Systems, Inc. All rights reserved.

HW Prefetch SW prefetch Block Prefetch

Xtensa Core

Architecture

LX 4 onwards LX 4 onwards LX 6 onwards

Prefetch

initiated by

HW on stream detect User’s software

program

User’s software program

Prefetch

quantity

1/2/4 cache lines – depending on

aggressiveness. Software

programmable.

Only one

cacheline

One or Multiple cachelines

Cache

supported

Both Dcache and Icache * Only for DCache Only for Dcache

HW

configurability

Prefetch buffer & number of

entries – Core configuration option

Prefetch buffer –

Core configuration

option

Prefetch buffer & number of

entries – Core configuration

option

Software

programmable

Prefetch aggressiveness for I$ and

D$ independently

Yes. Can reserve #entries in

prefetch buffer for block

prefetch

Configuration

register

PREFCTL PREFCTL PREFCTL

Prefetch types – At a quick glance

* Prefetch always applies to the data cache, and applies to the instruction cache for some

configurations of line sizes. (Changed in LX6)

24 © 2016 Cadence Design Systems, Inc. All rights reserved.

TIE

25 © 2016 Cadence Design Systems, Inc. All rights reserved.

Important new TIE features

• Register file architectures

• FLIX design

• Hardware sharing (shared semantics)

• Protos – some notes

• Tc reports

26 © 2016 Cadence Design Systems, Inc. All rights reserved.

Register Files

• In a load-store machine the register file architecture is extremely important
– Most operands to computation will come from them in one form or another

• Now there is great flexibility in the architecture, size and depth of regfiles
– Can be very wide (> 1024bit)

– Can have arbitrary numbers of registers > 1 … you want an 11-entry 73bit regfile ? You got it!

– Can have up to 32 (count ‘em) read ports and 16 (“are you sure?!”) write ports
– Remember that currently all read/write ports are fully bypassed … you would not actually want to reach these

limits because the bypass networks would likely be enormous 

– Can be linked into “virtual” register files in pairs or quads
– Make a 16-entry 32-bit regfile usable as a 8-entry 64-bit or 4-entry 128-bit

– Opens up new possibilities for DSP processing

• From the programmer’s viewpoint, register files are where “custom ctypes” live
– The compiler will manage scheduling, load/spill, allocation ….

• You can have a total of 24 separate register files in an Xtensa

27 © 2016 Cadence Design Systems, Inc. All rights reserved.

Since (RE.2)
Register Groups: 1 implementation but 3 virtual views

• A user regfile can be used as
three virtual regfiles of
different widths

– x1: 2𝑛 entries, each w wide

– x2: 2𝑛−1 entries, each 2w wide
– Implicitly refers to 2 consecutive entries of

physical implementation

– x4: 2𝑛−2 entries, each 4w wide
– Implicitly refers to 4 consecutive entries of

physical implementation

• All three virtual regfiles use
same physical hardware

– XCC ensures no overlaps when
allocating register indices for
variables

• x1 virtual regfile is always
available

• x2 and x4 virtual regfiles
need to be enabled explicitly
in TIE

– Either or both can be enabled

• Number of entries, and

width of each entry, is

same as x1 register file

28 © 2016 Cadence Design Systems, Inc. All rights reserved.

Register Groups
Syntax

regfile CR1 8 8 CR CR2=2 CR4=4

// ctype definition for CR register file

ctype xx_char 8 8 CR1

// ctype definition for CR2 register file

ctype xx_short 16 16 CR2 { xx_char hi, xx_char lo }

// ctype definition for CR4 register file

ctype xx_int 32 32 CR4 { xx_char a, xx_char b, xx_char c, xx_char d }

// Operation that uses register groups

operation { out CR2 result, in CR2 dataA, in CR1 data } { } { .. }

Customer can optionally create register

groups by specifying the number of

consecutive entries. Syntax is:

group-name=[2|4]

 At least one ctype that is as wide as the

register group must be declared

 The ctype must be a “struct ctype” that

references ctypes of primary register file.

Operations can directly use register groups

as operands

29 © 2016 Cadence Design Systems, Inc. All rights reserved.

Physical Implementation Choice
MULTI-PORT Implementation

Bank 0 𝑛

𝑤

𝑤

2𝑤

log(𝑛)

log(𝑛)

log(𝑛/2)

0

1

𝑤

Port 0

Port 1

• The regfile is implemented as a
single bank w-wide and n-deep

• Each regfile port is w-wide

• Regfile ports used per operand is
variable

• x1 regfile access uses 1 port

• x2 regfile access uses 2 ports

• x4 regfile access uses 4 ports

• Can potentially increase ports
on regfile

• Impacts area (regfile core and
read/write pipelines)

• Could adversely impact timing

Legend

w – physical width of each register

n – number of entries in register file

Figure shows a single read port on a register file with

x2 and x4 register groups

regfile CR1 8 32 cr CR2=2 CR4=4

30 © 2016 Cadence Design Systems, Inc. All rights reserved.

Physical Implementation Choice
VIEWS Implementation

• Regfile is composed of
banks of equal depth

– E.g. the regfile in figure has 4
banks, each 8-wide and 8-deep

• Regfile indices are
interleaved across banks

– E.g., Index 0 is in Bank 0, Index
1 is in Bank 1, and so on…

• Wider data is a
concatenation of multiple
banks

– E.g., x2 data is a concatenation
of data on Banks 0 and 1, or 2
and 3

Figure shows a single read port on a register file with

x2 and x4 register groups

regfile CR1 8 32 cr CR2=2 CR4=4

31 © 2016 Cadence Design Systems, Inc. All rights reserved.

FLIX Support
Flexible Length Instruction eXtension

• First iteration (circa 2003) – Single 64-bit FLIX length allowed

• Since then …
– Gradual relaxation of limits, shorter FLIX (32b)  longer FLIX (128b), more FLIX (2 lengths

allowed, then more …)

• Implementation Limits (rarely reached):
– Max Formats  24

– Max slots  64

– Max slots (in 128b format) 30

– Format lengths  32 <= Format Length <= 128 (integer #bytes)

• It’s pretty Flexible 

• Watch out – you can create a monster of an instruction decode unit
– Remember KISS !

format f64 64 {slot0, slot1}

slot_opcodes slot0 {ADD, AND}

slot_opcodes slot1 {SUB, XOR}

32 © 2016 Cadence Design Systems, Inc. All rights reserved.

Sharing Hardware

• Shared functions
– Very easy to use, can share hardware “per slot” or globally

– Useful for quick “what-if” analysis, but not the best for “final implementations”
– there isn’t time here to dig into “why”, just take my word on it 

• Semantics are the way to go
– What we use 

– Can be multi-cycle, can implement the HW for 100’s of instructions
– Which means they can be very complicated and difficult to write/debug  need a structured design flow

• NOW Semantics can be SHARED across slots in a FLIX machine
– Still only one copy of the hardware

– More flexibility in HW design for the “mix” of instructions the compiler uses

– More efficient than using shared functions.

– See section 20.6 in RF.3 TIE Reference Manual

33 © 2016 Cadence Design Systems, Inc. All rights reserved.

Protos – what are they and why do they matter ?

• Essentially the mechanism for connecting xt-xcc to your hardware

• Used to define the programming model
– E.g. operator overloading, type conversions, default types, instruction fusing (technically that’s a

“imap”)

• Can be single instructions, or sequences

• Greatly enhance the programmer’s experience – read up on them

34 © 2016 Cadence Design Systems, Inc. All rights reserved.

TIE compiler reports

• When you compile some TIE code, tc creates some reports
– And lots of other things … they are all in the tdk/ directory

• Area estimates

• Power estimates

• Report on operand, regfile and FLIX design

• All useful, note the choice of word … “estimate”
– Do not start writing your marketing material based on these numbers 

35 © 2016 Cadence Design Systems, Inc. All rights reserved.

Tdk .report – some highlights

• Very useful regfile information - #ports and operand schedules
– There is now an advanced TIE training class that goes into why this is important

36 © 2016 Cadence Design Systems, Inc. All rights reserved.

Tdk .report – flops inferred in semantics

• Will be due to multi-cycle semantics

• Typically “wide” pipeline flops should
be only one pipe stage deep

• Useful tool for spotting “inefficient”
schedules …

• There are many other useful pieces
of info in the .report files …

37 © 2016 Cadence Design Systems, Inc. All rights reserved.

TIE constructs – Honourable Mentions
Interesting features to read up on

• TIE property “shared_or” and “ignore state output”
– Allows creation of “sticky bits” in your FLIX design (TIE RM section 4 and 20.2)

• Bitkill – allows partial update of output operands
– no need to create inouts where not needed (TIE RM 7.4, 7.5)

• Specialized_op – tell the compiler two instructions only differ e.g. by immediate
– Useful when you have a “large immediate” and “small immediate” version of an instruction

– Compiler will select the most efficient based on immediate value and code optimisation (TIE
RM 20.1)

• Header_include – embed useful header info in the TIE file
– TIE RM 20.9 – Provide a header “automatically” along with your TIE headers

• TIEprint() – diagnostics for ISS simulation
– This is purely a simulation artefact – useful for debugging (TIE RM 26)

38 © 2016 Cadence Design Systems, Inc. All rights reserved.

Tools / Debug

39 © 2016 Cadence Design Systems, Inc. All rights reserved.

Performance Monitors
Non-intrusive counting of events in a real HW target

• Performance Monitors - hardware counting of events on the updated trace port

• When to use:
– When ISS/XTSC system model is not enough to measure performance

– Not enough of the system is modeled

– Model is not accurate enough

– Anything you have to have Silicon or FPGA

– In-Field performance analysis, debugging

• Use Cases:
– Statistical Profiling provides an overview

– Overall performance profiling of target software with large data sets

– Identify inefficient functions or sections in the code

– Details function analysis with direct counter access
– Detailed analysis of individual functions or sections in the code

– Identify inefficient constructs

– Identify reasons for inefficiency due to stalls, cache misses,…

40 © 2016 Cadence Design Systems, Inc. All rights reserved.

What is counted ?
Up to 8 32-bit counters software programmable

• Always Increment (counts cycles)

• Overflow of Counter N-1

• Successfully Retired Instructions

• D-Side Global Stalls

• I-Side Global Stalls

• Exceptions and Replays

• Holds and other Bubbles

• I-TLB Access

• I-Side Memory Accesses

• D-TLB Access

• Data Memory Load Instruction
– LS0,LS1

• Data Memory Stores Instruction
– LS0,LS1

• Data Memory Accesses
– LS0,LS1

• Multiple Loads/Stores

• Outbound Prefetch/Castout

• Inbound I or D Target

• Prefetch

• There are almost 100 countable hardware events, in SELECT groups listed below

• Select Groups:

41 © 2016 Cadence Design Systems, Inc. All rights reserved.

Use the provided HAL APIs

• Always best to use the (supported) HAL APIs to access these types of functions

• See debug guide chapter 8

• See Software Toolkit userguide chapter 6

• The above give descriptions how to do profiling using these counters

• Remember  They are on the trace port, they are NON-INTRUSIVE

42 © 2016 Cadence Design Systems, Inc. All rights reserved.

Code Coverage
Built into Xplorer

43 © 2016 Cadence Design Systems, Inc. All rights reserved.

Quick points on code coverage

• Provides statistics on lines of source code executed over one or more runs

• Good for verifying complete exercising of all lines of source code (e.g. testing) or
any areas of dead code that need to be removed

• Only supported in Xplorer, no command-line version is available

• Uses feedback data collection (code instrumenting) to check coverage

• Coverage can be checked using either software or hardware feedback
mechanisms

• Better results at lower optimization levels

• Coverage under IPA not supported

• Runs are cumulative, so multiple runs may be done under different scenarios to
verify complete coverage

• See Xplorer online help for details

44 © 2016 Cadence Design Systems, Inc. All rights reserved.

Summary

• Hopefully some points of interest – thanks for listening!

• Xtensa is a wide topic – there’s a lot to know

• There is an increasing amount of training going to the iLS system

• There are user groups

• There will be lunch … shortly 

