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Our group: Prof. Luca Benini 

• ETH Zurich, Integrated Systems Lab (IIS) 
– Digital Circuits and Systems 

 

• Around 40 people 
– IC designers 

– Software developers 

 

• Close collaborations 
– Politecnico di Milano 

– CEA-LETI 

– EPFL 

 

• Industrial support from STMicroelectronics 
– Silicon access to 28nm FDSOI 
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Our research: 

PULP: Parallel Ultra-Low-Power Processor 

• Exploit parallelism 
– Multiple small cores 

organized in clusters 

– Share memory within the 
cluster 

– Multiple clusters per chip 

• Simple but efficient 
processor cores 
– Based on OpenRISC/RISC-V 

– Custom ISA extensions 

• Dedicated accelerators 

• Multiple Technologies 
– Near-threshold operation 

12.02.2016 
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PULP related chips 

• Main PULP chips (ST 28nm FDSOI) 

– PULPv1 

– PULPv2 

– PULPv3 (in production) 

– PULPv4 (in progress) 

• PULP development (UMC 65nm) 

– Artemis - IEEE 754 FPU  

– Hecate - Shared FPU 

– Selene - Logarithmic Number System 

FPU 

– Diana - Approximate FPU 

– Mia Wallace – full system 

– Imperio - PULPino chip (Jan 2016) 

– Fulmine – Secure cluster (Jan 2016) 

• RISC-V based systems (GF 28nm) 

– Honey Bunny 

• Early building blocks (UMC180) 

– Sir10us  

– Or10n 

• Mixed-signal systems (SMIC 130nm) 

– VivoSoC  

– EdgeSoC (in planning) 

• IcySoC chips approx. computing 

platforms (ALP 180nm) 

– Diego 

– Manny  

– Sid 
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Outline 

• Introduction 

 

• Case Study 1: Digital Signature Verification 

 

• Case Study 2: Turbo Decoding in Mobile Communication 

 

• Case Study 3: Random Number Generator 

 

• Conclusion 
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Application Specific Instruction Set Processors 

(ASIPs) 

Performance – Flexibility Trade-off 

2/12/2016 6 Michael Gautschi 
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Flexibility 
Low 

Low High 

High 

• Xtensa Core Generator allows to build a specific Processor Core 

 

• Used in our Lecture “Advanced System-on-Chip-Design” 

• TIE instructions can be used to speedup applications 

• Students get the opportunity to work with Xtensa Core 

Generator 

Introduction 



Integrated Systems Laboratory 

Cryptographic Example: ECDSA signature 

verification 
• Elliptic Curve Digital Signature 

Algorithm (ECDSA) 

– Signature validation with Elliptic 

Curves (EC) 

 

• ECDSA requires prime and 

binary finite field operations 

 

• Add, sub, mult, div, etc. defined 

in the finite-field arithmetic 

– We used the NIST B-233 curve 

12.02.2016 

• Flexibility allows to support 
different algorithms and different 
standards with one hardware! 

 

• Finite field operations are not 
suitable for general purpose 
architectures 

      =>  hardware much more efficient!  
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Cryptographic Example: Base processor 

configuration 

• Processor configuration: 
– 5 stage integer pipeline 

– 32 32bit general purpose registers 

– 16x16 bit multiplier 

– 2 KB I$, D$ 

 

• Estimated performance (65nm LP technology): 
– Max speed:  344 MHz (worst case) 

– Area:   83 kGE 

– Power :   20 mW 

 

• ECDSA algorithm ported from a former semester project 
[1] 
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[1] Semester Thesis by A. Traber, S. Stucki, 2014, A Unified Multiplier Based Hardware Architecture for Elliptic Curve Cryptography 
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ECDSA Signature Verification Algorithm 

• Simple squaring operation on a 233 bit binary field: 
• Insert ‘0’ bit between each input bit 

• e.g. ’1101’  =>  ‘01010001’ 

• Reduce resulting 466 bit number to 233 bit 

 

• Requires masking and shifting in C -> not efficient at all! 

 

• Hardware architectures can do such operations in one cycle! 

 => add custom instructions for 16bit mult, and squaring 

12.02.2016 

Operation Total (cycles) Total (%) # function 
calls 

Code size 
(bytes) 

ECDSA Verification 46’674’997 6518 

GF(2233) multiplication 
16x16 bit binary f. field mult. 

42’063’643 
34’199’189 

90.1% 
73.3% 

2’309 
591’104 

366 
157 

GF(2233) squaring 2’706’852 5.7% 2’472 446 

others 1’904’502 21.0% - 4’930 

Profiling results using Xtensa Xplorer: 
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Optimizing the multiplication in GF(2233) 

12.02.2016 

 
// intrinsic function call 
     
prod = BinMul16(a,b); 
 

// a, b, prod are stored in normal registers 

// shortened C-code: binary field 16 bit 
// multiplication 
 
uint16_t a, b;      // input 
uint32_t prod = 0;  // output 
 
for(i = 0; i < 16; i++) { 
  if((a&(1<<i)) 
      prod ^= b << i; 
} 
 

// shortened BinMul operation 

operation BinMul16 {out AR res, in AR a, in AR b}{}{ 

 wire [31:0] temp0 = (a & (1 << 0)) ? (b << 0))           : 32’b0 

  wire [31:0] temp1 = (a & (1 << 1)) ? (temp0^(b << 1))    : temp0; 

 wire [31:0] temp2 = (a & (1 << 2)) ? (temp1^(b << 2))    : temp1; 

 // … 

 wire [31:0] temp15 = (a & (1 << 15)) ? (temp14^(b << 15)) : temp14;   

 assign res = temp15; 

} 

  ~60 cycles 

1 cycle only! 

Original C code 

New C code 

“TIE” – Tensilica Instruction Extensions 
Speedup of 
factor 60! 
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Results: Performance 

• Profiling results of specialized circuit 

• Area requirements: 2.2 kGE 
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Operation Total (cycles) # cycles before Speedup 

ECDSA Verification 6’181’171 46’674’997 7.5x 

GF(2233) multiplication 
16x16 bit binary f. field 
multiplication 

4’163’127 
591’104 

42’063’643 
34’199’189 

10.1x 
57.9x 

GF(2233) squaring 177’998 2’706’852 15.2x 

others 1’840’046 1’904’502 

• Comparison to HW-architecture:[2] 
– Coprocessor with 16 bit datapath requires ~1’850’000 cycles (12 

kGE) 

– Factor 3.3 slower 
[2] M. Gautschi, M. Mühlberghuber et.al. , SIRIOUS: A tightly coupled ECC Coprocessor for the OpenRISC 
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ASIP Implementation of a BCJR Decoder 

Mobile Communications – System Model 

• Decoder for forward error correcting codes one of the main 
bottlenecks for the receiver 

• Typically: processor for higher layers, ASIC for decoder and 
baseband processing 

• Throughput, area and power consumption critical 

• Convolutional codes (CCs) and concatenated CCs used in mobile 
communications 

 

• This project: decoder for a convolutional code (BCJR algorithm) 
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ASIC vs. Processor 

• State of the art BCJR ASIC [3] 
– 1 bit/cycle  

– 40kGE 

– 500Mbps in 180nm CMOS 

– Inflexible, difficult to change 

 

• Processor 
– 1e-4 bit/cycle 

– 100kGE 

– Very flexible, multi-standard BCJR 

– Can be used for other tasks as well (rate matching, higher OSI 

layers) 

12.02.2016 

BCJR Decoder ASIC: 
4,8,16,32 states [3] 

[3] Studer et al., “Implementation Trade-Offs of Soft-Input Soft-Output MAP Decoders for Convolutional Codes”, 2012 
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ASIP:  The best of both worlds? 

• High flexibility for decoder required: 

– Wide range of code rates, channel conditions, coding schemes, 

block sizes, … 

– Devices have to support different standards 

 

• CPU advantageous for other blocks 

– Adjacent blocks (rate matching, HARQ memories) better suited 

for software 

– Processor required for the protocol stack 

– Easier implementation of multi-mode, multi-standard decoders 

 

• Still high performance though custom extensions 

– Is it possible to achieve good performance without a co-

processor? 
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BCJR Algorithm 

• Decoder algorithm for convolutional codes by Bahl, Cocke, Jelinek, 

Raviv  

• Used as inner decoders in almost all mobile communications 

standards  

(e.g. EEDGE, UMTS, HSPA, HSPA+, LTE, LTE-A, Mobile WiMAX) 

• Trellis-based algorithm 

 

• Algorithm: uses a forward 

and a backward recursion 

 

• Goal: find the most likely  

sequence of transmitted 

symbols 
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Trellis diagram: forward metrics A, 
backward metrics B and branch metrics Γ 
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ASIP Implementation – ACS Extension 

• The critical path of a fully pipelined BCJR decoder lies within an add-

compare-select (ACS) unit 

• No multipliers or other complex circuits needed 

• First try: use an extension for the ACS unit 

• Reduction minimal, only 5-10% reduction 

12.02.2016 

BCJR Architecture ACS Architecture 
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ASIP Implementation – Alpha Unit 
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Extension 

ACS 

ACS 

ACS 

ACS 

Extension: HW 
8 ACS units 

 A,Γ 

• Idea: calculate one complete trellis step in  

an extension 

– 8+8: inputs (previous alpha and branch metrics) 

– 8 outputs (new alpha metrics) 

• Number of cycles reduced by 94% 

– Current bottleneck: memory access and address calculation 

• Area overhead of ~8kGE (processor ~100kGE) 
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Results 

• The number of cycles/bit for a BCJR implementation can 

be significantly reduced (by ~90%) by adding custom 

extensions, at a moderate area overhead of 8kGE. 

• The resulting ASIP is still 1000x slower than a highly 

optimized ASIC implementation 

• The ASIP solution might be interesting for low-

throughput standards (UMTS, EDGE) 

 

• Possible Future Optimizations 

– Quantization (ASIC: 5 to 10bit, ASIP: 32bit) 

– Different memory organization with quantization 
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Fast Gaussian Random Number Generation 

• Gaussian random numbers are used in many fields: 
– Noise generators for communication channels 
– Particle filters 
– Monte Carlo simulations 

• in our case finance 
• Hardware accelerated derivative pricing 

 
• Digital GRNG in a nutshell: 

– Until the late 1900s, mostly software methods are used, based on 
transformations of Uniformly distributed random numbers (URNs) 

– Todays HW implementations are inherited from their software 
predecessors 

• e.g. Box muller method (used in Xilinx IP core & CUDA) 
• But they come along with complex FSMs, loops, huge LUTs and 

thus often result in complex HW designs 

– Recently (2014 IEEE Trans. on VLSI), the Central Limit Theorem 
(CLT) approach was rediscovered  → This is what is investigated in 
this project 
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CLT based Gaussian Random Number 

Generator 

• Sum of uniformly 
distributed random 
numbers approximates a 
GRN 
 

• Generated with 
Tausworthe URNGs 
 

• Seed as input 
 

• Shift operation at output, 
to get distribution in the 
desired range 
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Basic Ingredient of CLT: Tausworthe URNG 

• 32b output  
 

• 3 x 32 bit state  
registers 
 

• One output/cycle 
 

• Implemented in C 
and HW (Xtensa 
TIE) 
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Results: URNG 

12.02.2016 

rand() TW-SW TW-HW (TIE) TW-HW [4], Virtex 4* 

cycles/RN 100 121 2 1 

accelerator GEs 0 0 2183 1065 to 1704  

[4] Pierre Greisen, Flexible Digital Emulator for a Wireless MIMO Channel, ETHZ IIS MSc Thesis Spring 2007 
*15 to 25 GEs per FPGA slice according to Xilinx 

50x speedup :-) 
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Uniformly distributed 32b integer random numbers can be generated in one 

cycle by investing 2.2kGE, while the built-in rand() function takes 100 cycles. 

Case Study 3: rand() 
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Results: GRNG Performance - normplot() 
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TW-CLT12-HW 

RAND-CLT12-SW 

randn() Matlab 

Observation: 
 
Acceptable results 
between 
+/- 3 sigma 
(99.7% coverage) 
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Results: GRNG with 6 TW-URNGs 

12.02.2016 

RAND-CLT6-SW TW-CLT6-SW 

TW-CLT6-HW (TIE) 

sum in SW TW-CLT6-HW (TIE) 

cycles/RN 673 736 12 2 

accelerator 

GEs 0 0 11014 11113 

TW-CLT6-HW sum in HW 

decode/multiplexing 20% 

operations 14% 

states 66% 

Distribution of accelerator gates: 
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Results: GRNG with 12 TW-URNGs 
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Distribution of accelerator gates: 

TW-CLT12-HW sum in HW 

decode/multiplexing 18% 

operations 15% 

states 67% 

RAND-CLT12-SW TW-CLT12-SW 

TW-CLT12-HW (TIE) 

sum in SW TW-CLT12-HW (TIE) 

cycles/RN 1440 1603 24 2 

accelerator 

GEs 0 0 21628 21805 
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Normally distributed random numbers can be generated in two cycles 

with an N-stage CLT-based GRNG, which requires N x 1.8kGE. 

Case Study 3: rand() 
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Conclusion 

• With the Xtensa CoreGen development framework it is possible 
to implement and evaluate “small” hardware projects in a 
couple of days. 

 

• Speedups up to 50x can be achieved by replacing critical 
functions with hardware TIE. 

 

• Since we have a lot of experience in hardware design and 
designed a lot of chips, we would be very interested in doing 
tapeouts with the Xtensa Cores. 

 

– Optimize an Xtensa core for near threshold operation 

 

– Ultimate goal: Heterogeneous PULP architecture with clusters of 
Xtensa cores specialized for computer vision 
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Questions 
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