
Integrated Systems Laboratory

Accelerating Function Kernels for Elliptic

Curve Operations and Mobile Communication

Algorithms

Tensilica Day, Hannover

Michael Gautschi

Prof. Luca Benini

12.02.2016

Integrated Systems Laboratory

Our group: Prof. Luca Benini

• ETH Zurich, Integrated Systems Lab (IIS)
– Digital Circuits and Systems

• Around 40 people
– IC designers

– Software developers

• Close collaborations
– Politecnico di Milano

– CEA-LETI

– EPFL

• Industrial support from STMicroelectronics
– Silicon access to 28nm FDSOI

12.02.2016 Michael Gautschi 2

Integrated Systems Laboratory

Our research:

PULP: Parallel Ultra-Low-Power Processor

• Exploit parallelism
– Multiple small cores

organized in clusters

– Share memory within the
cluster

– Multiple clusters per chip

• Simple but efficient
processor cores
– Based on OpenRISC/RISC-V

– Custom ISA extensions

• Dedicated accelerators

• Multiple Technologies
– Near-threshold operation

12.02.2016

L2
RAM

C
lu

st
er

 B
u

s

TCDM Logarithmic Interconnect

Cluster
IF

Bus
Adapter

DMA

Instruction Bus

Core
 #1

Core
#2

Core
#N

Shared
Instruction Cache

L0 L0 L0

SRAM SRAM

SCM SCM

SRAM SRAM

SCM SCM

SRAM

SCM

HW
Acc.

HW Synch

Michael Gautschi 3

Integrated Systems Laboratory

PULP related chips

• Main PULP chips (ST 28nm FDSOI)

– PULPv1

– PULPv2

– PULPv3 (in production)

– PULPv4 (in progress)

• PULP development (UMC 65nm)

– Artemis - IEEE 754 FPU

– Hecate - Shared FPU

– Selene - Logarithmic Number System

FPU

– Diana - Approximate FPU

– Mia Wallace – full system

– Imperio - PULPino chip (Jan 2016)

– Fulmine – Secure cluster (Jan 2016)

• RISC-V based systems (GF 28nm)

– Honey Bunny

• Early building blocks (UMC180)

– Sir10us

– Or10n

• Mixed-signal systems (SMIC 130nm)

– VivoSoC

– EdgeSoC (in planning)

• IcySoC chips approx. computing

platforms (ALP 180nm)

– Diego

– Manny

– Sid

12.02.2016

180nm

130nm

28nm 28nm 28nm 65nm 65nm 65nm 65nm 65nm

180nm 180nm 180nm

180nm

65nm

Michael Gautschi 4

Integrated Systems Laboratory

Outline

• Introduction

• Case Study 1: Digital Signature Verification

• Case Study 2: Turbo Decoding in Mobile Communication

• Case Study 3: Random Number Generator

• Conclusion

12.02.2016 Michael Gautschi 5

Integrated Systems Laboratory

Application Specific Instruction Set Processors

(ASIPs)

Performance – Flexibility Trade-off

2/12/2016 6 Michael Gautschi

ASICs

ASIPs

GPP

DSP

En
er

gy
 E

ff
ic

ie
n

cy
/S

p
ee

d

Flexibility
Low

Low High

High

• Xtensa Core Generator allows to build a specific Processor Core

• Used in our Lecture “Advanced System-on-Chip-Design”

• TIE instructions can be used to speedup applications

• Students get the opportunity to work with Xtensa Core

Generator

Introduction

Integrated Systems Laboratory

Cryptographic Example: ECDSA signature

verification
• Elliptic Curve Digital Signature

Algorithm (ECDSA)

– Signature validation with Elliptic

Curves (EC)

• ECDSA requires prime and

binary finite field operations

• Add, sub, mult, div, etc. defined

in the finite-field arithmetic

– We used the NIST B-233 curve

12.02.2016

• Flexibility allows to support
different algorithms and different
standards with one hardware!

• Finite field operations are not
suitable for general purpose
architectures

 => hardware much more efficient!

Michael Gautschi 7

Case Study 1: ECDSA

Integrated Systems Laboratory

Cryptographic Example: Base processor

configuration

• Processor configuration:
– 5 stage integer pipeline

– 32 32bit general purpose registers

– 16x16 bit multiplier

– 2 KB I$, D$

• Estimated performance (65nm LP technology):
– Max speed: 344 MHz (worst case)

– Area: 83 kGE

– Power : 20 mW

• ECDSA algorithm ported from a former semester project
[1]

12.02.2016

[1] Semester Thesis by A. Traber, S. Stucki, 2014, A Unified Multiplier Based Hardware Architecture for Elliptic Curve Cryptography

Michael Gautschi 8

Case Study 1: ECDSA

Integrated Systems Laboratory

ECDSA Signature Verification Algorithm

• Simple squaring operation on a 233 bit binary field:
• Insert ‘0’ bit between each input bit

• e.g. ’1101’ => ‘01010001’

• Reduce resulting 466 bit number to 233 bit

• Requires masking and shifting in C -> not efficient at all!

• Hardware architectures can do such operations in one cycle!

 => add custom instructions for 16bit mult, and squaring

12.02.2016

Operation Total (cycles) Total (%) # function
calls

Code size
(bytes)

ECDSA Verification 46’674’997 6518

GF(2233) multiplication
16x16 bit binary f. field mult.

42’063’643
34’199’189

90.1%
73.3%

2’309
591’104

366
157

GF(2233) squaring 2’706’852 5.7% 2’472 446

others 1’904’502 21.0% - 4’930

Profiling results using Xtensa Xplorer:

Michael Gautschi 9

Case Study 1: ECDSA

Integrated Systems Laboratory

Optimizing the multiplication in GF(2233)

12.02.2016

// intrinsic function call

prod = BinMul16(a,b);

// a, b, prod are stored in normal registers

// shortened C-code: binary field 16 bit
// multiplication

uint16_t a, b; // input
uint32_t prod = 0; // output

for(i = 0; i < 16; i++) {
 if((a&(1<<i))
 prod ^= b << i;
}

// shortened BinMul operation

operation BinMul16 {out AR res, in AR a, in AR b}{}{

 wire [31:0] temp0 = (a & (1 << 0)) ? (b << 0)) : 32’b0

 wire [31:0] temp1 = (a & (1 << 1)) ? (temp0^(b << 1)) : temp0;

 wire [31:0] temp2 = (a & (1 << 2)) ? (temp1^(b << 2)) : temp1;

 // …

 wire [31:0] temp15 = (a & (1 << 15)) ? (temp14^(b << 15)) : temp14;

 assign res = temp15;

}

 ~60 cycles

1 cycle only!

Original C code

New C code

“TIE” – Tensilica Instruction Extensions
Speedup of
factor 60!

Michael Gautschi 10

Case Study 1: ECDSA

Integrated Systems Laboratory

Results: Performance

• Profiling results of specialized circuit

• Area requirements: 2.2 kGE

12.02.2016

Operation Total (cycles) # cycles before Speedup

ECDSA Verification 6’181’171 46’674’997 7.5x

GF(2233) multiplication
16x16 bit binary f. field
multiplication

4’163’127
591’104

42’063’643
34’199’189

10.1x
57.9x

GF(2233) squaring 177’998 2’706’852 15.2x

others 1’840’046 1’904’502

• Comparison to HW-architecture:[2]
– Coprocessor with 16 bit datapath requires ~1’850’000 cycles (12

kGE)

– Factor 3.3 slower
[2] M. Gautschi, M. Mühlberghuber et.al. , SIRIOUS: A tightly coupled ECC Coprocessor for the OpenRISC

Michael Gautschi 11

Case Study 1: ECDSA

Integrated Systems Laboratory

ASIP Implementation of a BCJR Decoder

Mobile Communications – System Model

• Decoder for forward error correcting codes one of the main
bottlenecks for the receiver

• Typically: processor for higher layers, ASIC for decoder and
baseband processing

• Throughput, area and power consumption critical

• Convolutional codes (CCs) and concatenated CCs used in mobile
communications

• This project: decoder for a convolutional code (BCJR algorithm)

12.02.2016 Michael Gautschi 12

Case Study 2: BCJR

Integrated Systems Laboratory

ASIC vs. Processor

• State of the art BCJR ASIC [3]
– 1 bit/cycle

– 40kGE

– 500Mbps in 180nm CMOS

– Inflexible, difficult to change

• Processor
– 1e-4 bit/cycle

– 100kGE

– Very flexible, multi-standard BCJR

– Can be used for other tasks as well (rate matching, higher OSI

layers)

12.02.2016

BCJR Decoder ASIC:
4,8,16,32 states [3]

[3] Studer et al., “Implementation Trade-Offs of Soft-Input Soft-Output MAP Decoders for Convolutional Codes”, 2012

Michael Gautschi 13

Case Study 2: BCJR

Integrated Systems Laboratory

ASIP: The best of both worlds?

• High flexibility for decoder required:

– Wide range of code rates, channel conditions, coding schemes,

block sizes, …

– Devices have to support different standards

• CPU advantageous for other blocks

– Adjacent blocks (rate matching, HARQ memories) better suited

for software

– Processor required for the protocol stack

– Easier implementation of multi-mode, multi-standard decoders

• Still high performance though custom extensions

– Is it possible to achieve good performance without a co-

processor?

12.02.2016 Michael Gautschi 14

Case Study 2: BCJR

Integrated Systems Laboratory

BCJR Algorithm

• Decoder algorithm for convolutional codes by Bahl, Cocke, Jelinek,

Raviv

• Used as inner decoders in almost all mobile communications

standards

(e.g. EEDGE, UMTS, HSPA, HSPA+, LTE, LTE-A, Mobile WiMAX)

• Trellis-based algorithm

• Algorithm: uses a forward

and a backward recursion

• Goal: find the most likely

sequence of transmitted

symbols

12.02.2016

Trellis diagram: forward metrics A,
backward metrics B and branch metrics Γ

St
at

es

Time

Michael Gautschi 15

Case Study 2: BCJR

Integrated Systems Laboratory

ASIP Implementation – ACS Extension

• The critical path of a fully pipelined BCJR decoder lies within an add-

compare-select (ACS) unit

• No multipliers or other complex circuits needed

• First try: use an extension for the ACS unit

• Reduction minimal, only 5-10% reduction

12.02.2016

BCJR Architecture ACS Architecture

Michael Gautschi 16

Case Study 2: BCJR

Integrated Systems Laboratory

ASIP Implementation – Alpha Unit

12.02.2016

Extension

ACS

ACS

ACS

ACS

Extension: HW
8 ACS units

 A,Γ

• Idea: calculate one complete trellis step in

an extension

– 8+8: inputs (previous alpha and branch metrics)

– 8 outputs (new alpha metrics)

• Number of cycles reduced by 94%

– Current bottleneck: memory access and address calculation

• Area overhead of ~8kGE (processor ~100kGE)

Michael Gautschi 17

Case Study 2: BCJR

Integrated Systems Laboratory

Results

• The number of cycles/bit for a BCJR implementation can

be significantly reduced (by ~90%) by adding custom

extensions, at a moderate area overhead of 8kGE.

• The resulting ASIP is still 1000x slower than a highly

optimized ASIC implementation

• The ASIP solution might be interesting for low-

throughput standards (UMTS, EDGE)

• Possible Future Optimizations

– Quantization (ASIC: 5 to 10bit, ASIP: 32bit)

– Different memory organization with quantization

 12.02.2016 Michael Gautschi 18

Case Study 2: BCJR

Integrated Systems Laboratory

Fast Gaussian Random Number Generation

• Gaussian random numbers are used in many fields:
– Noise generators for communication channels
– Particle filters
– Monte Carlo simulations

• in our case finance
• Hardware accelerated derivative pricing

• Digital GRNG in a nutshell:

– Until the late 1900s, mostly software methods are used, based on
transformations of Uniformly distributed random numbers (URNs)

– Todays HW implementations are inherited from their software
predecessors

• e.g. Box muller method (used in Xilinx IP core & CUDA)
• But they come along with complex FSMs, loops, huge LUTs and

thus often result in complex HW designs

– Recently (2014 IEEE Trans. on VLSI), the Central Limit Theorem
(CLT) approach was rediscovered → This is what is investigated in
this project

12.02.2016 Michael Gautschi 19

Case Study 3: rand()

Integrated Systems Laboratory

CLT based Gaussian Random Number

Generator

• Sum of uniformly
distributed random
numbers approximates a
GRN

• Generated with
Tausworthe URNGs

• Seed as input

• Shift operation at output,
to get distribution in the
desired range

12.02.2016

TW1 TW2 TW3 TW4 TW5 TW6

+

+

+ +

+

>> L

seed1 seed2 seed3 seed4 seed5 seed6

output

Michael Gautschi 20

Case Study 3: rand()

Integrated Systems Laboratory

Basic Ingredient of CLT: Tausworthe URNG

• 32b output

• 3 x 32 bit state
registers

• One output/cycle

• Implemented in C
and HW (Xtensa
TIE)

12.02.2016 Michael Gautschi 21

Case Study 3: rand()

Integrated Systems Laboratory

Results: URNG

12.02.2016

rand() TW-SW TW-HW (TIE) TW-HW [4], Virtex 4*

cycles/RN 100 121 2 1

accelerator GEs 0 0 2183 1065 to 1704

[4] Pierre Greisen, Flexible Digital Emulator for a Wireless MIMO Channel, ETHZ IIS MSc Thesis Spring 2007
*15 to 25 GEs per FPGA slice according to Xilinx

50x speedup :-)

Michael Gautschi 22

Uniformly distributed 32b integer random numbers can be generated in one

cycle by investing 2.2kGE, while the built-in rand() function takes 100 cycles.

Case Study 3: rand()

Integrated Systems Laboratory

Results: GRNG Performance - normplot()

12.02.2016

TW-CLT12-HW

RAND-CLT12-SW

randn() Matlab

Observation:

Acceptable results
between
+/- 3 sigma
(99.7% coverage)

Michael Gautschi 23

Case Study 3: rand()

Integrated Systems Laboratory

Results: GRNG with 6 TW-URNGs

12.02.2016

RAND-CLT6-SW TW-CLT6-SW

TW-CLT6-HW (TIE)

sum in SW TW-CLT6-HW (TIE)

cycles/RN 673 736 12 2

accelerator

GEs 0 0 11014 11113

TW-CLT6-HW sum in HW

decode/multiplexing 20%

operations 14%

states 66%

Distribution of accelerator gates:

Michael Gautschi 24

Case Study 3: rand()

Integrated Systems Laboratory

Results: GRNG with 12 TW-URNGs

12.02.2016

Distribution of accelerator gates:

TW-CLT12-HW sum in HW

decode/multiplexing 18%

operations 15%

states 67%

RAND-CLT12-SW TW-CLT12-SW

TW-CLT12-HW (TIE)

sum in SW TW-CLT12-HW (TIE)

cycles/RN 1440 1603 24 2

accelerator

GEs 0 0 21628 21805

Michael Gautschi 25

Normally distributed random numbers can be generated in two cycles

with an N-stage CLT-based GRNG, which requires N x 1.8kGE.

Case Study 3: rand()

Integrated Systems Laboratory

Conclusion

• With the Xtensa CoreGen development framework it is possible
to implement and evaluate “small” hardware projects in a
couple of days.

• Speedups up to 50x can be achieved by replacing critical
functions with hardware TIE.

• Since we have a lot of experience in hardware design and
designed a lot of chips, we would be very interested in doing
tapeouts with the Xtensa Cores.

– Optimize an Xtensa core for near threshold operation

– Ultimate goal: Heterogeneous PULP architecture with clusters of
Xtensa cores specialized for computer vision

12.02.2016 Michael Gautschi 26

Conclusion

Integrated Systems Laboratory

12.02.2016

Questions

Michael Gautschi 27

Acknowledgements:

Sven Stucki, Sandro Belfanti, Harald

Kröll

L2 Memory 8 * 32 kB

CORE3 CORE2 CORE1 CORE0

16 kB TCDM SCM
+

Log-interconnect

HW ACC

CLUSTER
PERIPHS

+
BUS

BRIDGES

ROM FLLs

D
M

A

TCDM SRAM
16 * 2kB

4KB SHARED I$

1
.8

 m
m

3.9 mm

Xtensa Cores

PULP cluster:

