
Juan Fernando Eusse and Rainer Leupers
Hannover, February 9th 2016

Tensilica Day

A Flexible ASIP Architecture for Connected
Components Labeling: Implementation,
Lessons Learned, and Integration into
Novel Design Tools

Agenda

2

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Connected Components Labeling (CCL)

 Detect connected regions of pixels
 Single pass algorithm

 One iteration over the input frame

 Additional data structures (memory) required

 Rasterized processing of individual pixels

 Uses 8 nearest neighbor mask

 Collect region characteristics on-the-fly (merge at the

end)

3

Input frame (RGB)

La
b

el
 g

en
er

at
io

n

Th
re

sh
o

ld
in

g

A x B x 3

Label matrix

A x B

1
2

3

4 5

6

Equivalence
table

Statistics

1 x 6

1
2
3
4
5
6

1
6

7 x 6

1
2
3
4
5
6

Architectural Customizations (I)

 Customization of a template
architecture
 Iterative architecture exploration

 LISA architecture description language

 Synopsys Processor Designer RISC

 Added custom logic
 Row buffer scratchpad + addressing

 Label assignment logic

 ET maintenance logic + register file

 Features scratchpad + update

logic

 HW size dependent on
 Frame size

 Number of possible labels

4

Row buffer scratchpad + logic

ET maintenance + register file
Features scratchpad +

update logicLabel assignment logic

Proposed architecture

Algorithmic Modification: Slicing Approach

 Hardware size explodes with frame size/complexity

5

1. Process slices

Equivalence tables
(per slice)

2. Merge slice labels

xi yin
u

m

xf yf xc yc

2 0 7 0 8 0 15

7 1 4 2 7 11 40

6 3 3 6 4 27 22

8 3 5 6 6 36 50

3 7 5 8 6 22 17

1 8 0 8 0 8 0

3. Calculate final
statistics

Lo
ca

l l
ab

el
 in

d
ex 1

2
3
4

…

N

Slice index

1 2 3 4 … M

Statistics
(per slice)

Lo
ca

l l
ab

el
 in

d
ex 1

2
3
4

…

N

1 2 3 4 … M

N: Max. labels per slice

M: Slices per frame

Merge boundaries

Architectural Customizations (II)

 Process M pixels in parallel
 Replicate custom logic

 Standard 32-bit interface (bottleneck)

 Serialize pixel reads and label writes

 Further customization
 Pixel load FSM

 Label write FSM

 8x custom labeling logic

 Chosen parameters
 512 labels per slice (9bits)

 2048x2048 frame size

6

Pixel load FSM Label write FSM

…

Labeling module 7Labeling module 0

Experimental Results: Setup and Metric Definition

 Input data sets
 CCL performance influenced by

frame complexity

 Publicly available frame sets

 Synthetic and natural images

 Performance metric
 Cycles-per-pixel (cpp) characterize

architectural efficiency

 Independent from core frequency

 Simulation setup
 Cycle accurate simulator used

 Best/average/worst cpp obtained

7

Natural images

Synthetic data sets

Experimental Results: Synthesis and Performance

 Synthesized with design
compiler
 350MHz@65nm – 1.8mm2

 Estimated power consumption

 110mW@25oC

 228mW@125oC

 Both cpp and fps metrics
used
 >30fps in avg for practical

images

 >10fps worst case for most

synthetic data sets

 5fps in the absolute worst case

8

Experimental Results: Flexibility and Comparison

 Impact of size and frame
complexity
 cpp variation given frame

complexity

 Super-slicing via SW (penalty

observed)

 Performance comparison
against
 Original PD_RISC (base)

 TI TMS320C64x DSP

 Performance gains (Flickr)
 PD_RISC: 6.7/33.1/87.8

 TI DSP: 10.2/11.6/12.9

9

Agenda

10

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Methodological Observations: Design Gap

 Current design methodologies
 Semi-automate some design steps

 ASIP performance obtained through

simulation

 Last step of the design cycle

 No warranty of requirement

satisfaction

 There is a need for tools that:
 Increase the chance of first-time-

architectural success

11

Several design
iterations required!!!

Algorithm/
Architecture

Co-Exploration

Architecture
Implementation

Toolchain
Generation

Application
Refinement

Specification
Design

Constraints

Application Analysis
(Profiling)

Simulation

Synthesis

Validation

Methodological Observations: Bridging the Gap

12

 Pre-architectural estimation of
achievable performance
 Use high level models to predict

application cycles

 Reduce the number of complete

design iterations

 Complement existing design flows

Algorithm/
Architecture

Co-Exploration

Architecture
Implementation

Toolchain
Generation

Application
Refinement

Specification
Design

Constraints

Application Profiling

Simulation/

Synthesis
PERF
EST≈

Agenda

13

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Performance Estimation: Datapath

14

User Inputs

clang

Execution counts
Branch statistics
Application traces

A

B

Performance Estimation: Datapath (II)

 Base estimation only
covers:
 Architecture selection

 Instruction set design

 Does a HW modification
improve performance?
 Discard sub-optimal mods

 Analyze side effects

 Customization techniques
to support:

Custom instructions/Legacy IP

What-if scenarios based on

code intervals

15

A

B

A

B

+

Cost = 1 cycle

(Custom Memories)

Cost = Est*0.5 cycles

(2x Parallelism)

Performance Estimation: Accuracy

 Usability depends on
estimation accuracy

 Several commercial
processors
 PD_RISC (Synopsys)

 C67x/C64x/C66x (TI DSPs)

 Using Cycle Accurate
Simulators
 Flat memory model, no caching

 Integrated by Silexica as a
general purpose estimator
 ARM A7/A9/A15/M4 and

Adapteva’s Epiphany models

 Parallel application mapping into

heterogeneous MPSoCs

16

Average gain: 248x (PD-RISC), 67x (TI DSPs)

(CA sim. time Vs. profiling + estimation time)

± 15% Error

Performance Estimation: ASIP Design

17

Performance
Goal

Performance Estimation: ASIP Design (I)

18

1 for sl = 0 . . . Slices do

2 for y = 0 . . . height/Slices do

3 for x = 0 . . . width do

4 pixel = (x, sl.Slices + y)

5 black = Image(pixel) < Threshold

6 if not black then

7 label(i, j) ← 0

8 else

9 if label(N) > 0 then

10 label(pixel) ← label(N)

11 else if label(NE) > 0 then

12 if label(NW) > 0 then

13 mergedLabel ← merge(label(NW,NE))

14 label(pixel) ← mergedLabel

15 else if label(W) > 0 then

16 mergedLabel ← merge(label(NW,W))

17 label(pixel) ← mergedLabel

18 else

19 label(pixel) ← label(NE)

20 end if

21 else if label(NW) > 0 then

22 label(pixel) ← label(NW)

23 else if label(W) > 0 then

24 label(pixel) ← label(W)

25 else

26 create new label

27 end if

28 end if

29 end for

30 end for

31 end for

<SourceWeighting name=“loop” function=“main” type=“fixed” cost=“9”>

<SourceRegion begin=“4” end=“28” />

<Exclusion begin=“11” end=“17” />

<Exclusion begin=“25” end=“28” />

</SourceWeighting>

Custom Instruction

Interval (Fixed Cost = 9)

Exclusion zone

 Use original costs from estimates

Agenda

19

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Conclusions

 Created an ASIP capable to perform CCL:
 Solution supports arbitrary frame sizes with varying complexity

 Capable of labeling FullHD frames at 45/30/5 fps in the best/average/worst case

 Evaluation performed over an extensive data set of over 11000 images

 Outperforms a commercial TI DSP for a factor of 10x

 Based on the performed ASIP design:

 Realized a set of tools that enable high level performance estimation

based on abstract processor models

 Obtained accuracies up to ±15% for the modeled processors

 Estimation is up to 248x faster than cycle accurate simulation

 Currently being applied by Silexica Software Solutions GmbH

 Estimation used for MPSoC task mapping decisions

 New processor models being created (ARM, Epiphany)

20

Thank you!

Questions?

21

