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Connected Components Labeling (CCL)

 Detect connected regions of pixels
 Single pass algorithm

 One iteration over the input frame

 Additional data structures (memory) required

 Rasterized processing of individual pixels

 Uses 8 nearest neighbor mask

 Collect region characteristics on-the-fly (merge at the

end)
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Architectural Customizations (I)

 Customization of a template
architecture
 Iterative architecture exploration

 LISA architecture description language

 Synopsys Processor Designer RISC

 Added custom logic
 Row buffer scratchpad + addressing

 Label assignment logic

 ET maintenance logic + register file

 Features scratchpad + update 

logic

 HW size dependent on
 Frame size

 Number of possible labels
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Algorithmic Modification: Slicing Approach

 Hardware size explodes with frame size/complexity
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Architectural Customizations (II)

 Process M pixels in parallel
 Replicate custom logic

 Standard 32-bit interface (bottleneck)

 Serialize pixel reads and label writes

 Further customization
 Pixel load FSM

 Label write FSM

 8x custom labeling logic

 Chosen parameters
 512 labels per slice (9bits)

 2048x2048 frame size
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Experimental Results: Setup and Metric Definition

 Input data sets
 CCL performance influenced by 

frame complexity

 Publicly available frame sets

 Synthetic and natural images

 Performance metric
 Cycles-per-pixel (cpp) characterize 

architectural efficiency 

 Independent from core frequency

 Simulation setup
 Cycle accurate simulator used

 Best/average/worst cpp obtained 
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Natural images
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Experimental Results: Synthesis and Performance

 Synthesized with design 
compiler
 350MHz@65nm – 1.8mm2

 Estimated power consumption

 110mW@25oC

 228mW@125oC

 Both cpp and fps metrics
used
 >30fps in avg for practical 

images

 >10fps worst case for most

synthetic data sets

 5fps in the absolute worst case
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Experimental Results: Flexibility and Comparison

 Impact of size and frame 
complexity
 cpp variation given frame 

complexity

 Super-slicing via SW (penalty 

observed)

 Performance comparison 
against
 Original PD_RISC (base)

 TI TMS320C64x DSP

 Performance gains (Flickr)
 PD_RISC: 6.7/33.1/87.8

 TI DSP:    10.2/11.6/12.9
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Methodological Observations: Design Gap 

 Current design methodologies
 Semi-automate some design steps

 ASIP performance obtained through 

simulation

 Last step of the design cycle

 No warranty of requirement 

satisfaction

 There is a need for tools that:
 Increase the chance of first-time-

architectural success
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Methodological Observations: Bridging the Gap 
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 Pre-architectural estimation of 
achievable performance
 Use high level models to predict 

application cycles

 Reduce the number of complete

design iterations

 Complement existing design flows
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Performance Estimation: Datapath
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Performance Estimation: Datapath (II)

 Base estimation only 
covers:
 Architecture selection 

 Instruction set design

 Does a HW modification 
improve performance?
 Discard sub-optimal mods

 Analyze side effects

 Customization techniques 
to support:

Custom instructions/Legacy IP

What-if scenarios based on 

code intervals
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Performance Estimation: Accuracy 

 Usability depends on 
estimation accuracy

 Several commercial 
processors
 PD_RISC (Synopsys)

 C67x/C64x/C66x (TI DSPs)

 Using Cycle Accurate 
Simulators 
 Flat memory model, no caching

 Integrated by Silexica as a 
general purpose estimator
 ARM A7/A9/A15/M4 and 

Adapteva’s Epiphany models

 Parallel application mapping into 

heterogeneous MPSoCs
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Average gain: 248x (PD-RISC), 67x (TI DSPs) 

(CA sim. time Vs. profiling + estimation time)

± 15% Error



Performance Estimation: ASIP Design
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Performance Estimation: ASIP Design (I)
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1 for sl = 0 . . . Slices do

2 for y = 0 . . . height/Slices do

3 for x = 0 . . . width do

4 pixel = (x, sl.Slices + y)

5 black = Image(pixel) < Threshold

6 if not black then

7 label(i, j) ← 0

8 else

9 if label(N) > 0 then

10 label(pixel) ← label(N)

11 else if label(NE) > 0 then

12 if label(NW) > 0 then

13 mergedLabel ← merge(label(NW,NE))

14 label(pixel) ← mergedLabel

15 else if label(W) > 0 then

16 mergedLabel ← merge(label(NW,W))

17 label(pixel) ← mergedLabel

18 else

19 label(pixel) ← label(NE)

20 end if

21 else if label(NW) > 0 then

22 label(pixel) ← label(NW)

23 else if label(W) > 0 then

24 label(pixel) ← label(W)

25 else

26 create new label

27 end if

28 end if

29 end for

30 end for

31 end for

<SourceWeighting name=“loop” function=“main” type=“fixed” cost=“9”>

<SourceRegion begin=“4” end=“28” />

<Exclusion begin=“11” end=“17” />

<Exclusion begin=“25” end=“28” />

</SourceWeighting>

Custom Instruction

Interval (Fixed Cost = 9)

Exclusion zone

 Use original costs from estimates
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Conclusions

 Created an ASIP capable to perform CCL:
 Solution supports arbitrary frame sizes with varying complexity

 Capable of labeling FullHD frames at 45/30/5 fps in the best/average/worst case

 Evaluation performed over an extensive data set of over 11000 images

 Outperforms a commercial TI DSP for a factor of 10x

 Based on the performed ASIP design:

 Realized a set of tools that enable high level performance estimation

based on abstract processor models

 Obtained accuracies up to ±15% for the modeled processors

 Estimation is up to 248x faster than cycle accurate simulation

 Currently being applied by Silexica Software Solutions GmbH

 Estimation used for MPSoC task mapping decisions

 New processor models being created (ARM, Epiphany)
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Thank you!

Questions?
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