
Juan Fernando Eusse and Rainer Leupers
Hannover, February 9th 2016

Tensilica Day

A Flexible ASIP Architecture for Connected
Components Labeling: Implementation,
Lessons Learned, and Integration into
Novel Design Tools

Agenda

2

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Connected Components Labeling (CCL)

 Detect connected regions of pixels
 Single pass algorithm

 One iteration over the input frame

 Additional data structures (memory) required

 Rasterized processing of individual pixels

 Uses 8 nearest neighbor mask

 Collect region characteristics on-the-fly (merge at the

end)

3

Input frame (RGB)

La
b

el
 g

en
er

at
io

n

Th
re

sh
o

ld
in

g

A x B x 3

Label matrix

A x B

1
2

3

4 5

6

Equivalence
table

Statistics

1 x 6

1
2
3
4
5
6

1
6

7 x 6

1
2
3
4
5
6

Architectural Customizations (I)

 Customization of a template
architecture
 Iterative architecture exploration

 LISA architecture description language

 Synopsys Processor Designer RISC

 Added custom logic
 Row buffer scratchpad + addressing

 Label assignment logic

 ET maintenance logic + register file

 Features scratchpad + update

logic

 HW size dependent on
 Frame size

 Number of possible labels

4

Row buffer scratchpad + logic

ET maintenance + register file
Features scratchpad +

update logicLabel assignment logic

Proposed architecture

Algorithmic Modification: Slicing Approach

 Hardware size explodes with frame size/complexity

5

1. Process slices

Equivalence tables
(per slice)

2. Merge slice labels

xi yin
u

m

xf yf xc yc

2 0 7 0 8 0 15

7 1 4 2 7 11 40

6 3 3 6 4 27 22

8 3 5 6 6 36 50

3 7 5 8 6 22 17

1 8 0 8 0 8 0

3. Calculate final
statistics

Lo
ca

l l
ab

el
 in

d
ex 1

2
3
4

…

N

Slice index

1 2 3 4 … M

Statistics
(per slice)

Lo
ca

l l
ab

el
 in

d
ex 1

2
3
4

…

N

1 2 3 4 … M

N: Max. labels per slice

M: Slices per frame

Merge boundaries

Architectural Customizations (II)

 Process M pixels in parallel
 Replicate custom logic

 Standard 32-bit interface (bottleneck)

 Serialize pixel reads and label writes

 Further customization
 Pixel load FSM

 Label write FSM

 8x custom labeling logic

 Chosen parameters
 512 labels per slice (9bits)

 2048x2048 frame size

6

Pixel load FSM Label write FSM

…

Labeling module 7Labeling module 0

Experimental Results: Setup and Metric Definition

 Input data sets
 CCL performance influenced by

frame complexity

 Publicly available frame sets

 Synthetic and natural images

 Performance metric
 Cycles-per-pixel (cpp) characterize

architectural efficiency

 Independent from core frequency

 Simulation setup
 Cycle accurate simulator used

 Best/average/worst cpp obtained

7

Natural images

Synthetic data sets

Experimental Results: Synthesis and Performance

 Synthesized with design
compiler
 350MHz@65nm – 1.8mm2

 Estimated power consumption

 110mW@25oC

 228mW@125oC

 Both cpp and fps metrics
used
 >30fps in avg for practical

images

 >10fps worst case for most

synthetic data sets

 5fps in the absolute worst case

8

Experimental Results: Flexibility and Comparison

 Impact of size and frame
complexity
 cpp variation given frame

complexity

 Super-slicing via SW (penalty

observed)

 Performance comparison
against
 Original PD_RISC (base)

 TI TMS320C64x DSP

 Performance gains (Flickr)
 PD_RISC: 6.7/33.1/87.8

 TI DSP: 10.2/11.6/12.9

9

Agenda

10

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Methodological Observations: Design Gap

 Current design methodologies
 Semi-automate some design steps

 ASIP performance obtained through

simulation

 Last step of the design cycle

 No warranty of requirement

satisfaction

 There is a need for tools that:
 Increase the chance of first-time-

architectural success

11

Several design
iterations required!!!

Algorithm/
Architecture

Co-Exploration

Architecture
Implementation

Toolchain
Generation

Application
Refinement

Specification
Design

Constraints

Application Analysis
(Profiling)

Simulation

Synthesis

Validation

Methodological Observations: Bridging the Gap

12

 Pre-architectural estimation of
achievable performance
 Use high level models to predict

application cycles

 Reduce the number of complete

design iterations

 Complement existing design flows

Algorithm/
Architecture

Co-Exploration

Architecture
Implementation

Toolchain
Generation

Application
Refinement

Specification
Design

Constraints

Application Profiling

Simulation/

Synthesis
PERF
EST≈

Agenda

13

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Performance Estimation: Datapath

14

User Inputs

clang

Execution counts
Branch statistics
Application traces

A

B

Performance Estimation: Datapath (II)

 Base estimation only
covers:
 Architecture selection

 Instruction set design

 Does a HW modification
improve performance?
 Discard sub-optimal mods

 Analyze side effects

 Customization techniques
to support:

Custom instructions/Legacy IP

What-if scenarios based on

code intervals

15

A

B

A

B

+

Cost = 1 cycle

(Custom Memories)

Cost = Est*0.5 cycles

(2x Parallelism)

Performance Estimation: Accuracy

 Usability depends on
estimation accuracy

 Several commercial
processors
 PD_RISC (Synopsys)

 C67x/C64x/C66x (TI DSPs)

 Using Cycle Accurate
Simulators
 Flat memory model, no caching

 Integrated by Silexica as a
general purpose estimator
 ARM A7/A9/A15/M4 and

Adapteva’s Epiphany models

 Parallel application mapping into

heterogeneous MPSoCs

16

Average gain: 248x (PD-RISC), 67x (TI DSPs)

(CA sim. time Vs. profiling + estimation time)

± 15% Error

Performance Estimation: ASIP Design

17

Performance
Goal

Performance Estimation: ASIP Design (I)

18

1 for sl = 0 . . . Slices do

2 for y = 0 . . . height/Slices do

3 for x = 0 . . . width do

4 pixel = (x, sl.Slices + y)

5 black = Image(pixel) < Threshold

6 if not black then

7 label(i, j) ← 0

8 else

9 if label(N) > 0 then

10 label(pixel) ← label(N)

11 else if label(NE) > 0 then

12 if label(NW) > 0 then

13 mergedLabel ← merge(label(NW,NE))

14 label(pixel) ← mergedLabel

15 else if label(W) > 0 then

16 mergedLabel ← merge(label(NW,W))

17 label(pixel) ← mergedLabel

18 else

19 label(pixel) ← label(NE)

20 end if

21 else if label(NW) > 0 then

22 label(pixel) ← label(NW)

23 else if label(W) > 0 then

24 label(pixel) ← label(W)

25 else

26 create new label

27 end if

28 end if

29 end for

30 end for

31 end for

<SourceWeighting name=“loop” function=“main” type=“fixed” cost=“9”>

<SourceRegion begin=“4” end=“28” />

<Exclusion begin=“11” end=“17” />

<Exclusion begin=“25” end=“28” />

</SourceWeighting>

Custom Instruction

Interval (Fixed Cost = 9)

Exclusion zone

 Use original costs from estimates

Agenda

19

Methodological Observations2

Pre-Architectural Performance Estimation3

Conclusions4

Connected Components Labeling ASIP1

Conclusions

 Created an ASIP capable to perform CCL:
 Solution supports arbitrary frame sizes with varying complexity

 Capable of labeling FullHD frames at 45/30/5 fps in the best/average/worst case

 Evaluation performed over an extensive data set of over 11000 images

 Outperforms a commercial TI DSP for a factor of 10x

 Based on the performed ASIP design:

 Realized a set of tools that enable high level performance estimation

based on abstract processor models

 Obtained accuracies up to ±15% for the modeled processors

 Estimation is up to 248x faster than cycle accurate simulation

 Currently being applied by Silexica Software Solutions GmbH

 Estimation used for MPSoC task mapping decisions

 New processor models being created (ARM, Epiphany)

20

Thank you!

Questions?

21

