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Connected Components Labeling (CCL)

 Detect connected regions of pixels
 Single pass algorithm

 One iteration over the input frame

 Additional data structures (memory) required

 Rasterized processing of individual pixels

 Uses 8 nearest neighbor mask

 Collect region characteristics on-the-fly (merge at the

end)
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Architectural Customizations (I)

 Customization of a template
architecture
 Iterative architecture exploration

 LISA architecture description language

 Synopsys Processor Designer RISC

 Added custom logic
 Row buffer scratchpad + addressing

 Label assignment logic

 ET maintenance logic + register file

 Features scratchpad + update 

logic

 HW size dependent on
 Frame size

 Number of possible labels
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Proposed architecture



Algorithmic Modification: Slicing Approach

 Hardware size explodes with frame size/complexity
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1. Process slices
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Architectural Customizations (II)

 Process M pixels in parallel
 Replicate custom logic

 Standard 32-bit interface (bottleneck)

 Serialize pixel reads and label writes

 Further customization
 Pixel load FSM

 Label write FSM

 8x custom labeling logic

 Chosen parameters
 512 labels per slice (9bits)

 2048x2048 frame size
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Experimental Results: Setup and Metric Definition

 Input data sets
 CCL performance influenced by 

frame complexity

 Publicly available frame sets

 Synthetic and natural images

 Performance metric
 Cycles-per-pixel (cpp) characterize 

architectural efficiency 

 Independent from core frequency

 Simulation setup
 Cycle accurate simulator used

 Best/average/worst cpp obtained 
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Natural images

Synthetic data sets



Experimental Results: Synthesis and Performance

 Synthesized with design 
compiler
 350MHz@65nm – 1.8mm2

 Estimated power consumption

 110mW@25oC

 228mW@125oC

 Both cpp and fps metrics
used
 >30fps in avg for practical 

images

 >10fps worst case for most

synthetic data sets

 5fps in the absolute worst case
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Experimental Results: Flexibility and Comparison

 Impact of size and frame 
complexity
 cpp variation given frame 

complexity

 Super-slicing via SW (penalty 

observed)

 Performance comparison 
against
 Original PD_RISC (base)

 TI TMS320C64x DSP

 Performance gains (Flickr)
 PD_RISC: 6.7/33.1/87.8

 TI DSP:    10.2/11.6/12.9
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Methodological Observations: Design Gap 

 Current design methodologies
 Semi-automate some design steps

 ASIP performance obtained through 

simulation

 Last step of the design cycle

 No warranty of requirement 

satisfaction

 There is a need for tools that:
 Increase the chance of first-time-

architectural success
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Methodological Observations: Bridging the Gap 
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 Pre-architectural estimation of 
achievable performance
 Use high level models to predict 

application cycles

 Reduce the number of complete

design iterations

 Complement existing design flows
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Performance Estimation: Datapath
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Performance Estimation: Datapath (II)

 Base estimation only 
covers:
 Architecture selection 

 Instruction set design

 Does a HW modification 
improve performance?
 Discard sub-optimal mods

 Analyze side effects

 Customization techniques 
to support:

Custom instructions/Legacy IP

What-if scenarios based on 

code intervals
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Performance Estimation: Accuracy 

 Usability depends on 
estimation accuracy

 Several commercial 
processors
 PD_RISC (Synopsys)

 C67x/C64x/C66x (TI DSPs)

 Using Cycle Accurate 
Simulators 
 Flat memory model, no caching

 Integrated by Silexica as a 
general purpose estimator
 ARM A7/A9/A15/M4 and 

Adapteva’s Epiphany models

 Parallel application mapping into 

heterogeneous MPSoCs
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Average gain: 248x (PD-RISC), 67x (TI DSPs) 

(CA sim. time Vs. profiling + estimation time)

± 15% Error



Performance Estimation: ASIP Design
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Performance 
Goal



Performance Estimation: ASIP Design (I)
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1 for sl = 0 . . . Slices do

2 for y = 0 . . . height/Slices do

3 for x = 0 . . . width do

4 pixel = (x, sl.Slices + y)

5 black = Image(pixel) < Threshold

6 if not black then

7 label(i, j) ← 0

8 else

9 if label(N) > 0 then

10 label(pixel) ← label(N)

11 else if label(NE) > 0 then

12 if label(NW) > 0 then

13 mergedLabel ← merge(label(NW,NE))

14 label(pixel) ← mergedLabel

15 else if label(W) > 0 then

16 mergedLabel ← merge(label(NW,W))

17 label(pixel) ← mergedLabel

18 else

19 label(pixel) ← label(NE)

20 end if

21 else if label(NW) > 0 then

22 label(pixel) ← label(NW)

23 else if label(W) > 0 then

24 label(pixel) ← label(W)

25 else

26 create new label

27 end if

28 end if

29 end for

30 end for

31 end for

<SourceWeighting name=“loop” function=“main” type=“fixed” cost=“9”>

<SourceRegion begin=“4” end=“28” />

<Exclusion begin=“11” end=“17” />

<Exclusion begin=“25” end=“28” />

</SourceWeighting>

Custom Instruction

Interval (Fixed Cost = 9)

Exclusion zone

 Use original costs from estimates
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Conclusions

 Created an ASIP capable to perform CCL:
 Solution supports arbitrary frame sizes with varying complexity

 Capable of labeling FullHD frames at 45/30/5 fps in the best/average/worst case

 Evaluation performed over an extensive data set of over 11000 images

 Outperforms a commercial TI DSP for a factor of 10x

 Based on the performed ASIP design:

 Realized a set of tools that enable high level performance estimation

based on abstract processor models

 Obtained accuracies up to ±15% for the modeled processors

 Estimation is up to 248x faster than cycle accurate simulation

 Currently being applied by Silexica Software Solutions GmbH

 Estimation used for MPSoC task mapping decisions

 New processor models being created (ARM, Epiphany)
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Thank you!

Questions?
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