

Hans Volkers Jens Benndorf

ASIP-Case Studies II(a):

Heterogeneous Multicore Architecture for Image Sensor Processing featuring Tensilica Cores

Tensilica Day 9.2.2016 @ IMS-Hannover

DCT Company Profile

Dream Chip Technologies ...

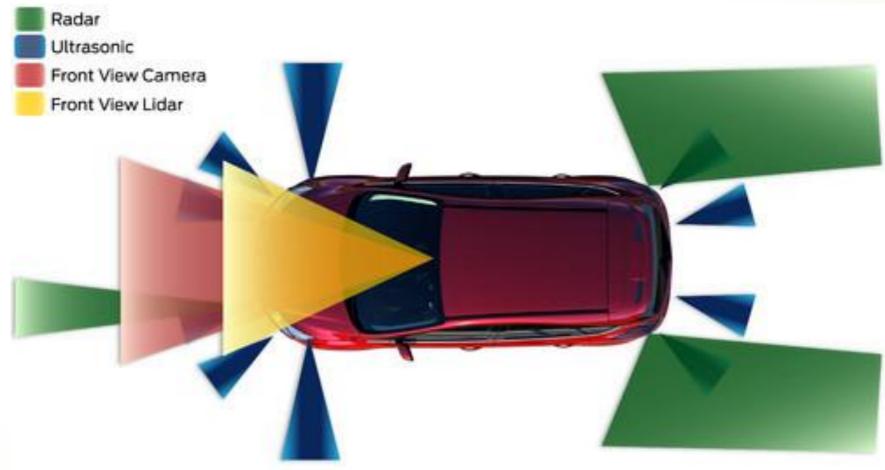
tensilica

- Design Service Company especially for European customers in the SoC and embedded SW market.
 - Hardware and software solutions for real time imaging applications
 - Embedded software on various platforms
 - Concept engineering
 - Cadence/Tensilica Design Center Partner since 2011
 - Tensilica Designs since 2005
- The CODESIGN Experts

THINGS2DO

The Things2Do-Project

- Things2Do: THIN but Great Silicon 2 Design Objects
- Schedule: 1 April 2014 30 September 2018
- THINGS2DO is an ENIAC project addressing semiconductor energy efficiency and design & development ecosystems for FD-SOI-technology
- More than 50 companies, institutes and universities from 12 countries are addressing different applications for 22/28nm FDSOI technology
- The Dream Chip contribution
 - Part of **DreamChip** is to create a complex SoC design for camera based ADAS applications
 - Part of LUH IMS is the reference software on the heterogeneous SoC design from DCT
 - CADENCE supplies EDA tools and IP infrastructure to the project, Global Foundries supply the 22nm FD-SOI technology/ manufacturing
 - Partners:


Advanced Driver Assistance Systems (ADAS) overview

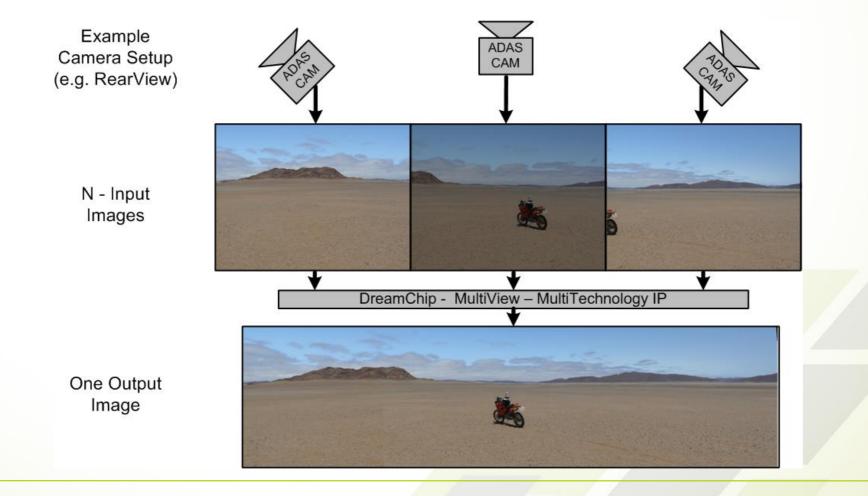
Source: autobild.de

Assisted Driving requires Cameras, Radar and Ultrasonic

Source: Auto-Medienportal.net

6

Use Case #1: Digital Mirroring



Use Case #1: Digital Mirroring - The Multiview Idea

 Automotive multi camera systems for Bird-View, Rear-View and Panorama-View are a major part of today's emerging technologies to make driving more safe and comfortable and to move towards autonomous vehicles.

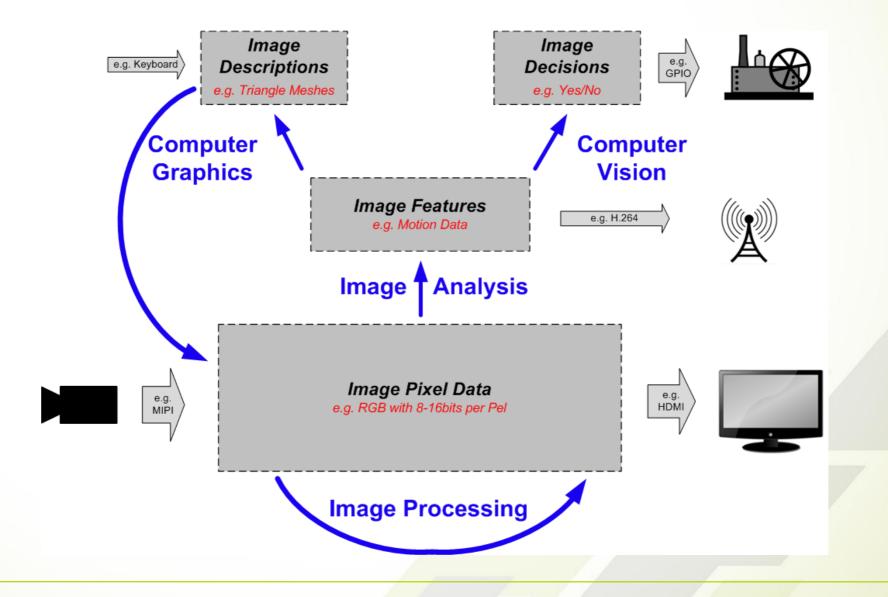
Use Case #2 : 360 deg Top View Camera

Verba der K

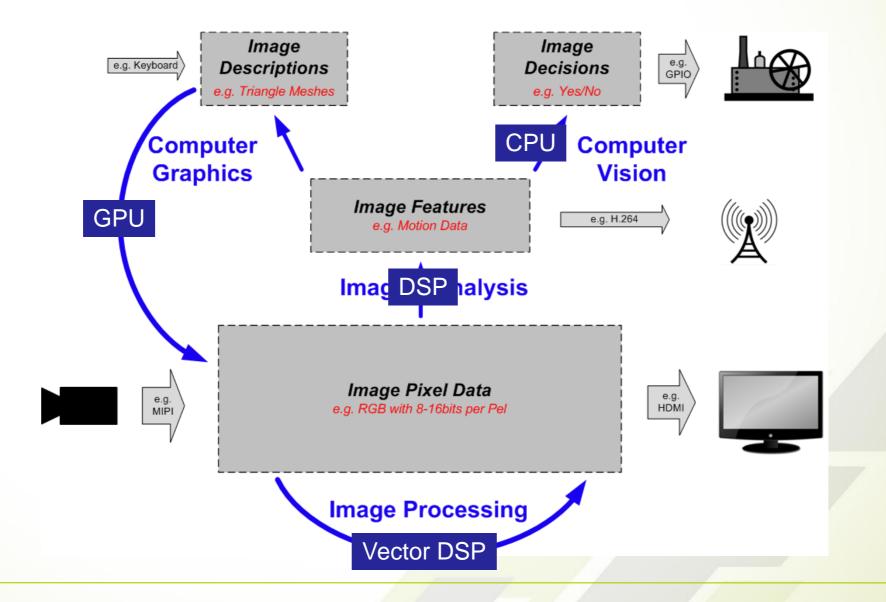
TopView Harmonization

	 H show help Q quit this program X off harmonization bypass F DN use filtered means D off display measurement window T ON use temporal low-pass filte W DN use difference-dependent we B off force bottom gains to 1.0 C DN use smooth transition betwe G off display gains on gray image S create screenshot 	r for gains ight for gains en edges			
	upper left corner >> upper right corner >> lower left corner >> lower right corner >>	aogR avgG avgI 134 170 204 149 142 132 126 124 135 145 140 140	augR augG augB 160 157 165 153 152 157 121 118 120 137 135 137	augR augG augR 184 172 167 78 78 82 189 174 181 153 143 133	augR augG aug R 109 106 Be 98 111 144 191 168 136 209 180 122
		5 1.052 1.117 1.000 8 1.205 0.951 1.000	0.966 0.951 0.895 1.000 0 1.097 1.064 1.030 1.000 1 1.092 1.087 1.079 1.000 0	.182 1.163 0.987 1.000 1 .853 0.883 0.873 1.000 0	ainH gainG gainU weight).846 0.860 1.013 1.000 1.170 1.240 1.190 1.000 0.895 0.924 0.101 1.000 0.776 0.830 1.052 1.000
baupositionen					
Kameras Erfassungsbereiche der Kameras					

Dream Chip Technologies GmbH

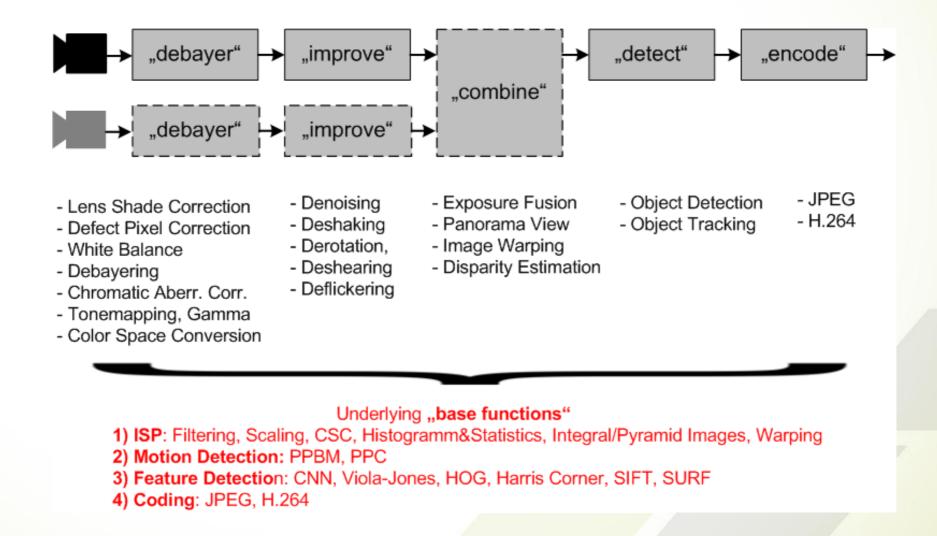


Introduction and Classification Image Sensor Processing (ISP)



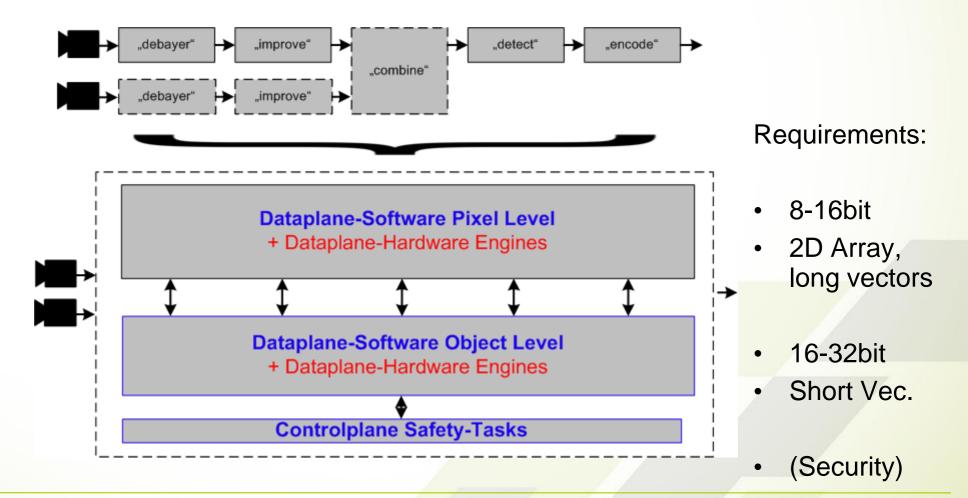
Introduction – Image Sensor Processing Overview

Heterogeneous Cores for Image Sensor Processing



Dream Chip Technologies GmbH

ISP Algorithms


Image Sensor Processing – Meta Pipeline

Planes and Task Types

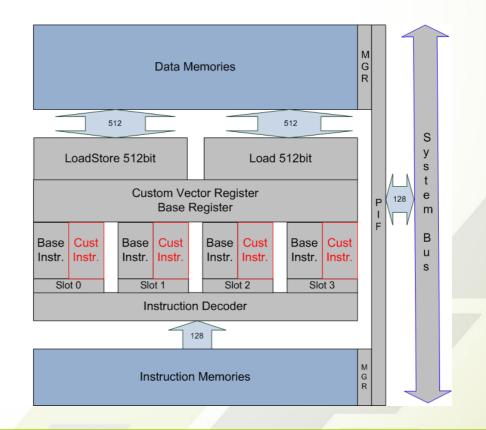
 Data plane algorithms can be mapped on two different levels with two specific data type and data parallelism requirements

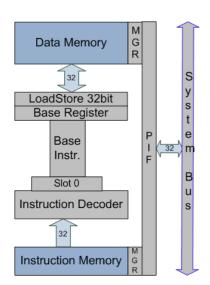
Typical Image Sensor Processing Workload

- Small Effort Functions: ~10 Operations per Pixel
 - e.g. Gamma Corr., LSC, White Balance Gain, CSC, Cropping
- Medium Effort Functions: ~100 Operations per Pixel
 - e.g.: Debayering, CAC, small Gauss and Median Filter, Defect Pixel Correction
- High Effort Functions: ~1000 Operations per Pixel
 - e.g.: Med. Bilateral Filtering, Motion Estimation, 3DNR, Encoding /Decoding
- "Typical" ISP Pipeline: ~4k Operations per Pixel
- Lets assume 4 sensors @1080p30: 240 Mega Pixels per second => 1000 Giga Operations per second are required

Typical workload is beyond pure SW based embedded computing

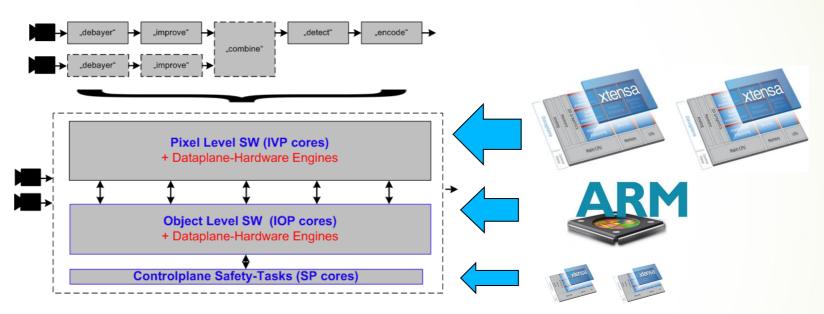
Dream Chip Technologies GmbH


Architecture Proposal



Tensilica Core Customization – Explanation by 2 Corner Cases

- Small Core (e.g. mini108)
- ~1 data plane operation per core cycle
- 32bits L/S per core cycle
- Base instructions


- Big Core (e.g. IVP / Vision P5)
- ~100 pixel operations per core cycle
- 1024bits L/S per core cycle
- Custom instructions

Codesign Approach

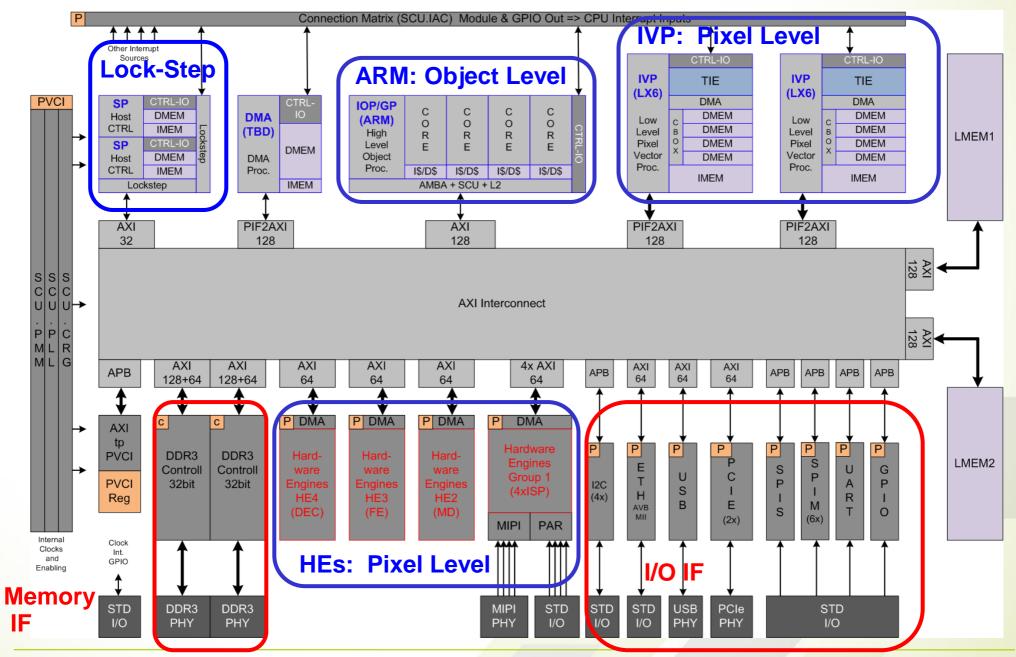
- Divide the dataplane SW into function on "Vectorizable Pixel Level" and "Object Level"
 - Use customized/optimized cores for the pixel level and for the object level
 - Multiple cores per class operate in parallel on pipeline stages and image segments
- Use HW engines for base computations which do not change (e.g. filter, transformations, compressions standards)
 - Use the dataplane SW flexibility to "glue" the HW results together

Optimized Cores for Pixel Level and Object Level

Customized Core for Pixel Level

- Tensilica/Cadence Vision P5: Imaging Video Processor
- Predefined customization available ("Tensilica IVP'")
- 4 issue VLIW 32way SIMD custom instruction set
- App. 100 pixel level operations per clock
- Programmable by C-Code with Intrinsics

• Pre-Optimized Core for the Object Level:


- ARM Cortex A17 Quad Core
- Automotive Standard Core for Image Analysis
- Out of the box well suited for multi task 32bit object processing
 - Quad core, FPU support, short vectors by NEON
 - App. 10 object level operations per clock
- ADAS software libraries available

Dream CHIP Architecture Proposal with Details

Dream Chip Technologies GmbH

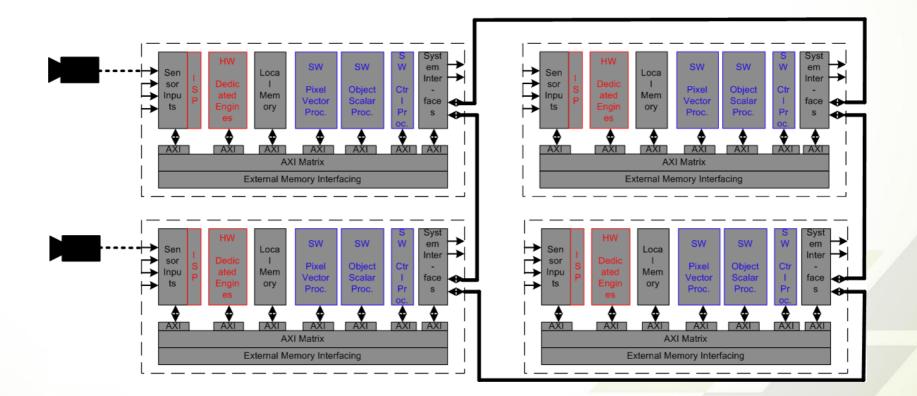
Effort versus Performance Matrix (22nm, FDSOI)

		Area (total)	Area (PHY)	Area (Logic)	Area (Mem)	Gates	Memory	Clock	Techn ology	Perfor- mance	Power (total)	Power (PHY)	Power (Logic)	Power (Mem)
Area = 38.4 mm2		38.4								2.8	4			
Power = 4 Watt		30.4								2.0	4			
Instances	#		[mm ²]	[mm ²]	[mm ²]	[kGates]	[KBytes]	[GHz]		[TOPS]	[W]	[W]	[W]	[W]
CPU Cores														
IVP_EP (100 op/cycle)	1	4.8	(n.a.)	0.5	4.3	1000	2172	1	LVT	100	0.55	(n.a.)	0.31	0.24
IVP_EP (100 op/cycle)	1	1.8	(n.a.)	0.5	1.3	1000	640	1	LVT	100	0.39	(n.a.)	0.31	0.07
IOP ARM A17 (10 op/cycle)	1	3.0	(n.a.)	2.0	1.0	(n.a.)	512	1	LVT	10	0.30	(n.a.)	0.20	0.10
SP (2xLX6) (2 op/cycle)	2	0.6	(n.a.)	0.1	0.3	100	128	0.5	RVT	2	0.04	(n.a.)	0.01	0.01
AXI Interconnect	1	0.5	(n.a.)	0.5	0.0	1000	0	0.5	RVT	(n.a.)	0.12	(n.a.)	0.12	-
HW Processing														
Engines 1 (1k op/cycle)	4	6.4	(n.a.)	0.8	0.9	1500	430	0.15	RVT	600	0.29	(n.a.)	0.06	0.01
Engines 2 (1k op/cycle)	1	1.3	(n.a.)	0.3	1.0	500	512	0.5	RVT	500	0.09	(n.a.)	0.06	0.03
Engines 3 (0.5k op/cycle)	1	0.9	(n.a.)	0.5	0.4	1000	192	0.5	RVT	500	0.14	(n.a.)	0.12	0.01
Engines 4 (0.5k op/cycle)	4	0.3	(n.a.)	0.1	0.0	100	9	0.5	RVT	1000	0.05	(n.a.)	0.01	0.00
System Memory														
DMA	1	0.2	(n.a.)	0.1	0.1	200	48	0.5	RVT	(n.a.)	0.03	(n.a.)	0.02	0.00
Local Memory (L3)	2	1.0	(n.a.)	0.0	0.5	10	256	0.5	RVT	(n.a.)	0.03	(n.a.)	0.00	0.02
DDR	2	5.3	2.4	0.1	0.1	200	64	0.5	RVT	(n.a.)	0.66	0.3	0.02	0.00
Sensor Interface														
MIPI-RX	4	2.0	0.5	0.0	0.0	0	0	0.5	RVT	(n.a.)	0.08	0.02	0.00	-
System Interfaces														
PCIe	2	3.3	1.5	0.1	0.1	160	32	0.5	RVT	(n.a.)	0.54	0.25	0.02	0.00
GBE	1	0.1	ext	0.1	0.0	200	16	0.5	RVT	(n.a.)	0.03	ext	0.02	0.00
USB3	1	1.5	1.2	0.1	0.3	160	128	0.5	RVT	(n.a.)	0.20	0.17	0.02	0.01
MIPI-TX (Display)	1	1.2	1.1	0.0	0.0	25	8	0.5	RVT	(n.a.)	0.04	0.04	0.00	0.00
SPI-M	6	0.2	(n.a.)	0.0	0.0	25	8	0.5	RVT	(n.a.)	0.02	(n.a.)	0.00	0.00
others	1	0.0	(n.a.)	0.0	0.0	25	8	0.5	RVT	(n.a.)	0.00	(n.a.)	0.00	0.00
System														
System controller / topleve	1	0.1	(n.a.)	0.1	0.0	100	0	0.5	RVT	(n.a.)	0.01	(n.a.)	0.01	-
PLL	4	0.2	0.04	0.0	0.0	0	0	1	(n.a)	(n.a.)	0.02	0.005	0.00	-
Area IOs	##	2.3	(n.a.)	0.007	0.0	(n.a)	0	0	(n.a)	(n.a.)	0.01	(n.a.)	0.00	-
Voltage Regulators	3	1.5	0.5	0.0	0.0	0	0	0	(n.a)	(n.a.)	0.30	0.1	0.00	-

• Average area figures @ 22nm :

~2 MGates/mm²,

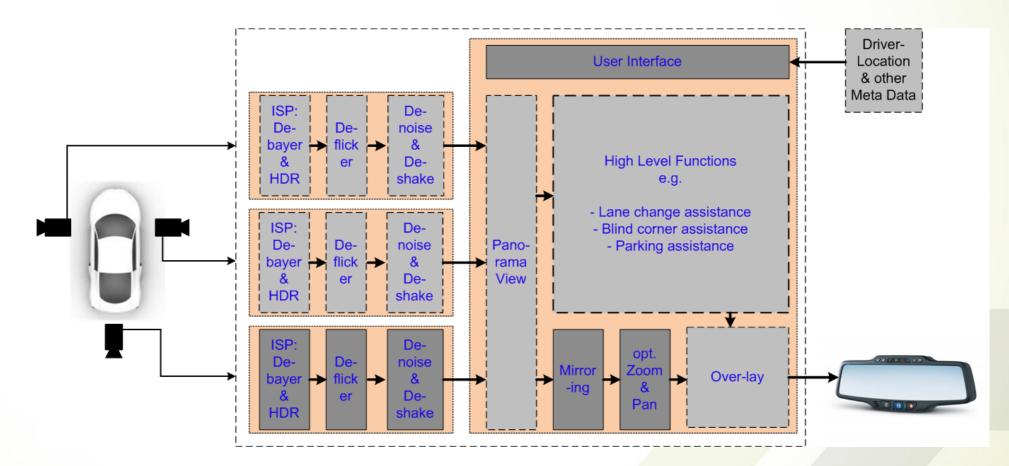
- Average power figures @1GHz:
- ~500 mW for 1mm² Logic


~100 mW for 1MByte

~0.5 MByte/mm² (large SP-SRAMs)

System Scalability

• Chip to chip interconnect by dual PCIe ports e.g. for ring interconnect



Dream Chip Technologies GmbH

Application Examples

ADAS System Study "Smart Rearview Mirror"

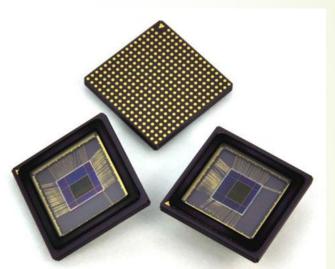
- System partitioning depending on customer requirements
 - Example: http://www.bmwblog.com/2016/01/05/bmw-i8-shows-mirrorless-camera-technology/

Things2Do Timeline

2014	2015	2016	2017	2018						
FDSOI Technology Development										
28nm		22/14nm								
		Things2Do								
		- F	+							
		Tape Out1	Tape Out2							
			Prototype	Prototype						

Summary

- Introduction to the Things2Do project and DCTs contribution
- Introduction to Image Sensor Processing
 - Image Processing, Image Analysis, Computer Vision and Computer Graphics
 => Requirements for heterogeneous computing
- ISP Algorithms
 - Meta Pipeline, Base Functions, Quantitative Analysis
 - => Requirements for base functions in HW
- ISP Architecture
 - Suggestion for a "Trinity" on the data plane:
 => SW for Object Level, SW for Pixel Level and HW Engines for "base functions"
- ISP Applications
 - Examples with Application-to-Architecture Mappings



Thank You'

Please contact info@dreamchip.de

Dream Chip Technologies GmbH Steinriede 10 D-30827 Garbsen/Hannover Germany ++49-5131-90805-0