

Vodafone Chair Mobile Communications Systems, Prof. Dr.-Ing. Dr. h.c. G. Fettweis

🜔 vodafone chair

An Application-Specific Instruction-Set Processor for Database Operators

TensilicaDay 2017

<u>Sebastian Haas</u> Emil Matúš Gerhard Fettweis

16.02.2017

Outline

- Development of database accelerator core based on a Tensilica processor
- Deploying instruction set extensions (TIE) for database operators used in query processing
- Analysis of query optimization techniques
- Chip tape-out of database accelerator core
- Evaluation: performance and power measurements of database operators and query optimization

INTRODUCTION

Introduction

🜔 vodafone chair

Query Processing

- Demand for
 - □ Low query latency (fast answer)
 - High throughput
 - Big data
 - Advanced analytics
- Growing demand, data, work, and complexity
- No sufficient improvement in energy efficiency of generalpurpose processors

➔ Custom-made processor

DATABASE ACCELERATOR

Processing Element (PE)

Tensilica Xtensa LX5 RISC

- Instruction set extensions (TIE) for database operators
- 2 load/store units
- 2x 128-bit SIMD
- 64-bit VLIW

Core Wrapper

- Clock generation (ADPLL): 83-2000 MHz
- Power management controller (PMC): 0.8-1.1 V
- 96 kB single-port SRAM
- JTAG

Titan3D Chip

Technology	28 nm SLP CMOS Globalfoundries		
Size (pre-shrink)	Chip: 3.3x1.5 mm ² , PE: 1.6x0.46 mm ²		
Gate count PE	1.11 M NAND2 gate equivalents		
PE area Core Memory	total: 0.286 mm ² , basic core (without ISE): 0.09 mm ² 0.232 mm ² (96 kB)		
Max. throughput of arithmetic-logic operations	50 GOPS		
Max. clock frequency	250 MHz at V_{DD} = 1.1 V		
Avg. power consumption	23.3 mW at 250 MHz, V_{DD} = 1.1 V		

Application-specific units containing load, store, and processing instructions

- Units support SQL queries
 - □ INTERSECT
 - □ ORDER BY
 - JOIN
 - □ GROUP BY

- Data types:
 - Sort and intersection of RID sets:
 32-bit integers
 - Join and aggregation of relational tables with multiple attributes:
 64-bit key-payload pairs (integer tuples)

Merge Sort algorithm by using the dedicated hardware unit for a 4x4 merge

EXPERIMENTS

Measurement Set-Up

- Set-up
 - □ Chip module
 - □ Power supply board
 - □ Host-PC

DB Operators: Throughput and Power

DB Operators: Energy

🜔 vodafone chair

In contrast to pure RISC execution, instruction set extensions lead to

- up to 23x performance improvement
- 55% increase of power consumption
- 8x to 17x energy gain

- Given 3 tables with different row count each containing 2 columns of 32-bit integer values
 - table_A id data

Capie_B						
id	data					

table D

lable_C				
id	data			

table C

 Query: Intersection of all tables
 SELECT table_A.id, table_A.data FROM table_A INTERSECT SELECT table_B.id, table_B.data FROM table_B INTERSECT SELECT table_C.id, table_C.data FROM table_C

Query Optimization: Example

- Optimized execution by first intersecting the two tables with lowest selectivity
 → Second intersection operates on minimum number of tuples
- Run accelerated 32-bit intersection on six single columns
 - \rightarrow Identify selectivities between tables
 - \rightarrow Choose optimal query order

Query optimization: Power measurements at different supply voltages

- Chip runs at 100 MHz
- Voltage reduction from 1.1V to 0.8V
 - \rightarrow Saving almost 50% energy

State-of-the-art Comparisons

System Overview	Max. frequency [MHz]	Memory Bandwidth [Gbit/s]	Join Throughput [Gbit/s]	Power [mW]	Energy [pJ/bit]		
This work 4.95 mm² chip, 28 nm	250	62.5	15.24	20.1	1.3		
ZYNQ [1]: Artix-7 FPGA, 85k logic cells, 1 GB DDR DRAM	200	68.0	0.55	723	1314		
ZYNQ [1]: ARM dual-core SoC, 28 nm, 1 GB DDR3 DRAM	667	68.0	0.04	803	20075		
FPGA [2]: 4x Virtex-6 FPGA, each 475k logic cells, each with 24 GB DDR DRAM	200	1228.8	80	19154 [3]	239		

References:

- [1] E. S. Chung, J. D. Davis, and J. Lee, "LINQits: Big Data on Little Clients," in Proceedings of the 40th Annual International Symposium on Computer Architecture, ser. ISCA'13. ACM, 2013, pp. 261–272.
- [2] J. Casper and K. Olukotun, "Hardware Acceleration of Database Operations," in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-programmable Gate Arrays, ser. FPGA'14, 2014, pp. 151–160.
- [3] Xilinx, Virtex-6 FPGA Data Sheet: DC and Switching Characteristics, March 2014, v3.6.

- Database accelerator core
 - □ Tensilica RISC core with instruction set extensions
 - Database operators for energy-efficient query processing
- Hardware/Software co-design approach with sophisticated tool flow
 - □ Cycle accurate simulator, processor generator
 - RTL code verification and simulation
 - □ Backend design, PCB development
- Titan3D Chip
 - □ Fabricated chip with performance and power measurements
 - Improvements on energy efficiency by three orders of magnitude compared to state-of-the-art systems

The presented results are published in the following paper:

S. Haas, O. Arnold, S. Scholze, S. Höppner, G. Ellguth, A. Dixius,
A. Ungethüm, E. Mier, B. Nöthen, E. Matus, S. Schiefer, L. Cederstroem,
F. Pilz, C. Mayr, R. Schüffny, W. Lehner, and G. P. Fettweis, **"A Database Accelerator for Energy-Efficient Query Processing and Optimization",** in 2016 IEEE Nordic Circuits and Systems Conference (NORCAS), Nov 2016, pp. 1–5.

Acknowledgements:

We would like to thank Cadence and Tensilica for providing software tools an IP, the Database Group for the fruitful ideas as well as the Chair for *Highly-Parallel VLSI Systems and Neuro-Microelectronics* of TU Dresden for backend design and PCB development of the Titan3D chip.

Thank you!