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Hardwired Control vs. Control Software

Hardwired Control Control Software

+ Low jitter, low latency + Reusable parts: RTOS, libraries
+ No organizational overhead + Useful abstractions: e.g threads
— Always start from scratch + Multiple interacting tasks

Jitter through interference
Overhead by abstractions (RTOS)

Expensive
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Between a Rock and a Hard Place
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Our Idea in a Nutshell
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Conclusion
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System Model: Event-Triggered Real-Time Systems

System Model

= Single-core or partitioned RTOS

Event-triggered real-time systems: execution threads, ISRs, etc.
Fixed-priority scheduling semantics
Ahead of time knowledge

— System objects (thread, resources, periodic signals) and their configuration
— Application structure including syscall locations and arguments
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System Model: Event-Triggered Real-Time Systems

System Model
= Single-core or partitioned RTOS

= Event-triggered real-time systems: execution threads, ISRs, etc.
= Fixed-priority scheduling semantics
u

Ahead of time knowledge

— System objects (thread, resources, periodic signals) and their configuration
— Application structure including syscall locations and arguments

AUTO SAR
Assumption apply to a wide range of systems: OSEK, AUTOSAR

= |ndustry standard widely employed in the automotive industry
= Static configuration at compile-time

= Fixed-priority scheduling with threads and ISRs

= Stack-based priority ceiling protocol (PCP) for resources
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Step 1:

Application - Example System .:,fé
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TerminateTask();
}

Extract a finite state machine from the application code
Application FSMs generate system-call "signals" towards the RTOS
Computation code is ignored, since it cannot modify the RTOS state
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The System State Machine
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Step 2: (LCTES'15, TECS'17)

m  Combine system-semantic, system configuration, and app FSMs
m  Explicitly enumerate all possible system states
m Every state exposes one currently running thread

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model 8-1



1 ¢ 0 [ Leibniz
O U tl I n e + 0] 2] Universitit
109:4 || Hannover

Motivation and Introduction
RTOS-Application Interaction Mode
The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline g=1



From the model to the implementation
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m  Minimize the (deterministic) finite state machine
m  Assign state and transition encodings
®  Minimize the truth table for hardware implementation
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m  Minimize the (deterministic) finite state machine
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®  Minimize the truth table for hardware implementation
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The OSEK-V Pipeline
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register write back

NPCGen | ' Reg File ) System State | 0.1 [ Static Alarms
nx PC &— n x 32 Regs Machine .
[T [T 14 [current hart] RTC Tick

T store NPC

select regs

select NPC

m  RISC-V and the Rocket Core

= New free and open research ISA (around since 2015)
= Rocket is a 5-stage pipeline implementation written in Chisel
= Multi-core capable, but no hardware multithreading
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The OSEK-V Pipeline
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select regs

select NPC

m  RISC-V and the Rocket Core

= New free and open research ISA (around since 2015)
= Rocket is a 5-stage pipeline implementation written in Chisel
= Multi-core capable, but no hardware multithreading

Step 4:

= Map every OS thread to one hardware thread

= System-state machine schedules hardware threads

= Execute stage sends system-call number to SSM (osek instruction)

= Component for alarms with constant period and phase (Static Alarms)
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Evaluation Scenario: Quadrotor Flight Control

i4Copter
m Realistic safety-critical real-time system
m 11 threads, 3 timers, 1 ISR, 53 system-call sites

m  Used only task-setup (no actual compuation code)

dOSEK
m  Framework for OSEK system analysis and kernel generator
m  Extracts the system state machine for a given application

m  Adapts application code to used custom osek instructions

OSEK-V
m  CPU Pipeline provides the OSEK kernel functionality
m  Generates Verilog code for the Zyng-7020 FPGA (ZedBoard)
m  Generates cycle-accurate C++ simulator that runs application
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FPGA Synthesis for ZedBoard (Zyng-7020)

Generate System State Machine in 73.68 s (96 % state encoding)

= Before state-machine minimization: 4834 states, 7479 transitions
m After state-machine minimization: 701 states, 1246 transitions
= Minimized Truth Table: 781 Rows/Clauses

Synthesize the Rocket in less than 10 minutes with Xilinx toolchain

= Memory LUTs go into register files (96 %)
= Logic LUTs go into system state machine (76 %)

Baseline  OSEK-V  + Static Alarms

Kernel Text Segment (bytes) 14386 8669 8393
Kernel Data Segment (bytes) 1908 410 354
Lookup Tables (LUT) 29460 32041 32341
Lookup Tables for Memory (Mem-LUT) 1033 2016 2016
Flip-Flops 14208 14129 14196
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Simulation in Cycle-Accurate Simulator
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m  Synchronous syscalls at least 75% faster
B Interrupts are still more expensive, as not mapped to own hardware threads

m  Static alarms offload timer handling
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m  OSEK-V as a hybrid solution between hardwired control and software

= RTOS behavior integrated into processor pipeline
= Application logic is updatable to a certain degree

m  OSEK-V has unique properties as an RTOS platform

Automatic application-specific pipeline derivation

Fast scheduling and thread context switches

Predictable: Operating System has minimal influence on hardware state
Scales with your application: Small systems result in low costs

Easy to verify actual implementation
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Simulation in Cycle-Accurate Simulator
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m  Execute i4Copter system image in cycle-accurate C++ simulator
m |RQs are blocked during system calls and interrupt handling
m  Average IRQ Blockade drops from 195 cycles to 41 cycles (with static alarms)
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