
Application/Hardware - Aware Operating System Design

Christian Dietrich, Daniel Lohmann
{dietrich,lohmann}@sra.uni-hannover.de

Leibniz Universität Hannover

7. February 2018

supported by



Hardwired Control vs. Control Software

Hardwired Control

+ Low jitter, low latency
+ No organizational overhead
– Always start from scratch
– Expensive

Control Software

+ Reusable parts: RTOS, libraries
+ Useful abstractions: e.g threads
+ Multiple interacting tasks
– Jitter through interference
– Overhead by abstractions (RTOS)

LUH Application/Hardware - Aware Operating System Design – Introduction and Motivation 2 – 1



Between a Rock and a Hard Place

Hardware

Operating System

Application 1 Application 2

Timer IRQ

passthrough

syscall syscall

switchrun

wait

stop

LUH Application/Hardware - Aware Operating System Design – Introduction and Motivation 3 – 1



Our Idea in a Nutshell

Application
Logic (CFG)

System
Configuration

Kernel
Semantic

Interaction Model
(State Machine)+ OSEK-V

Core

executes on

LUH Application/Hardware - Aware Operating System Design – Introduction and Motivation 4 – 1



Outline

Motivation and Introduction

RTOS–Application Interaction Model
The OSEK-V Processor Pipeline

Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design – RTOS–Application Interaction Model 5 – 1



System Model: Event-Triggered Real-Time Systems

System Model
Single-core or partitioned RTOS
Event-triggered real-time systems: execution threads, ISRs, etc.
Fixed-priority scheduling semantics
Ahead of time knowledge

System objects (thread, resources, periodic signals) and their configuration
Application structure including syscall locations and arguments

Assumption apply to a wide range of systems: OSEK, AUTOSAR
Industry standard widely employed in the automotive industry
Static configuration at compile-time
Fixed-priority scheduling with threads and ISRs
Stack-based priority ceiling protocol (PCP) for resources

LUH Application/Hardware - Aware Operating System Design – RTOS–Application Interaction Model 6 – 1



System Model: Event-Triggered Real-Time Systems

System Model
Single-core or partitioned RTOS
Event-triggered real-time systems: execution threads, ISRs, etc.
Fixed-priority scheduling semantics
Ahead of time knowledge

System objects (thread, resources, periodic signals) and their configuration
Application structure including syscall locations and arguments

Assumption apply to a wide range of systems: OSEK, AUTOSAR
Industry standard widely employed in the automotive industry
Static configuration at compile-time
Fixed-priority scheduling with threads and ISRs
Stack-based priority ceiling protocol (PCP) for resources

LUH Application/Hardware - Aware Operating System Design – RTOS–Application Interaction Model 6 – 1



Application – Example System

ISR(I1) {

isr()

if (cond)

ActivateTask(T);

iret();

}

TASK(T) {

kickoff()

computation();

TerminateTask();

}

A1 A2

A3

A4
isr

iret

Activ
ate

Task(
T)

ire
t

start

T1 T2
E

T3
start

kickoff
Terminate
Task()

S1
E

start

idle

Step 1:

Extract a finite state machine from the application code

Application FSMs generate system-call “signals” towards the RTOS

Computation code is ignored, since it cannot modify the RTOS state

LUH Application/Hardware - Aware Operating System Design – RTOS–Application Interaction Model 7 – 1



The System State Machine

S1 S1

S1 T1S1S1S1 T2

S1 T2 S1 T2

S1StartOS

idle

A1E A2isr

iret

A3 A
ct
iv
at
eT

as
k(
T
)

T1 iretT2 kickoff

TerminateTask

A1 E

A2

isr ire
t

A3
ActivateTask(T)

iret

A1 A2

A3

A4
isr

iret

Activ
ate

Task(
T)

ire
t

start

T1 T2
E

T3
start

kickoff
Terminate
Task()

S1
E

start

idle

SYSTEM {

TASK T {

PRIO = 4;

ACTIVATION = 1;

}

ISR I1 {

DEVICE = 35;

}

}

Sy
st
em

St
at
e
En
um

er
at
io
n

Step 2: (LCTES’15, TECS’17)

Combine system-semantic, system configuration, and app FSMs

Explicitly enumerate all possible system states

Every state exposes one currently running thread

LUH Application/Hardware - Aware Operating System Design – RTOS–Application Interaction Model 8 – 1



Outline

Motivation and Introduction

RTOS–Application Interaction Model

The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design – The OSEK-V Processor Pipeline 9 – 1



From the model to the implementation

S1 S1

S1 T1S1S1S1 T2

S1 T2 S1 T2

S1StartOS

idle

A1E A2isr

iret

A3 A
ct
iv
at
eT

as
k(
T
)

T1 iretT2 kickoff

TerminateTask

A1 E

A2

isr ire
t

A3
ActivateTask(T)

iret

001 010 110 10

011 110 010 00

011 011 000 00

001 000 011 01

010 001 110 10

111 000 000 00

111 010 000 00

000 011 110 10

System-Call Site Number

Next Task

Old State New State

TerminateTask T2 S1 Idle

Step 3:

Minimize the (deterministic) finite state machine

Assign state and transition encodings

Minimize the truth table for hardware implementation

LUH Application/Hardware - Aware Operating System Design – The OSEK-V Processor Pipeline 10 – 1



From the model to the implementation

S1 S1

S1 T1S1S1S1 T2

S1 T2 S1 T2

S1StartOS

idle

A1E A2isr

iret

A3 A
ct
iv
at
eT

as
k(
T
)

T1 iretT2 kickoff

TerminateTask

A1 E

A2

isr ire
t

A3
ActivateTask(T)

iret

001 010 110 10

011 110 010 00

011 011 000 00

001 000 011 01

010 001 110 10

111 000 000 00

111 010 000 00

000 011 110 10

System-Call Site Number

Next Task

Old State New State

TerminateTask T2 S1 Idle

Step 3:

Minimize the (deterministic) finite state machine

Assign state and transition encodings

Minimize the truth table for hardware implementation

LUH Application/Hardware - Aware Operating System Design – The OSEK-V Processor Pipeline 10 – 1



The OSEK-V Pipeline

i-fetch

hart PCi-
ca
ch
e i-decode

hart regs

execute

hart syscall

mem stage

hart

commit

hart result

NPC Gen
n× PC

Reg File
n× 32 Regs

System State
Machine

current hart

Static Alarms

RTC Tick

k×signals

stall

store NPC
select NPC

se
le
ct
re
gs

register write back

RISC-V and the Rocket Core
New free and open research ISA (around since 2015)
Rocket is a 5-stage pipeline implementation written in Chisel
Multi-core capable, but no hardware multithreading

Step 4:
Map every OS thread to one hardware thread
System-state machine schedules hardware threads
Execute stage sends system-call number to SSM (osek instruction)
Component for alarms with constant period and phase (Static Alarms)

LUH Application/Hardware - Aware Operating System Design – The OSEK-V Processor Pipeline 11 – 1



The OSEK-V Pipeline

i-fetch

hart PCi-
ca
ch
e i-decode

hart regs

execute

hart syscall

mem stage

hart

commit

hart result

NPC Gen
n× PC

Reg File
n× 32 Regs

System State
Machine

current hart

Static Alarms

RTC Tick

k×signals

stall

store NPC
select NPC

se
le
ct
re
gs

register write back

RISC-V and the Rocket Core
New free and open research ISA (around since 2015)
Rocket is a 5-stage pipeline implementation written in Chisel
Multi-core capable, but no hardware multithreading

Step 4:
Map every OS thread to one hardware thread
System-state machine schedules hardware threads
Execute stage sends system-call number to SSM (osek instruction)
Component for alarms with constant period and phase (Static Alarms)

LUH Application/Hardware - Aware Operating System Design – The OSEK-V Processor Pipeline 11 – 1



Outline

Motivation and Introduction

RTOS–Application Interaction Model

The OSEK-V Processor Pipeline

Evaluation
Conclusion

LUH Application/Hardware - Aware Operating System Design – Evaluation 12 – 1



Evaluation Scenario: Quadrotor Flight Control

i4Copter

Realistic safety-critical real-time system

11 threads, 3 timers, 1 ISR, 53 system-call sites

Used only task-setup (no actual compuation code)

dOSEK

Framework for OSEK system analysis and kernel generator

dOSEKExtracts the system state machine for a given application

Adapts application code to used custom osek instructions

OSEK-V

CPU Pipeline provides the OSEK kernel functionality

Generates Verilog code for the Zynq-7020 FPGA (ZedBoard)

Generates cycle-accurate C++ simulator that runs application

LUH Application/Hardware - Aware Operating System Design – Evaluation 13 – 1



FPGA Synthesis for ZedBoard (Zynq-7020)

Generate System State Machine in 73.68 s (96% state encoding)
Before state-machine minimization: 4834 states, 7479 transitions
After state-machine minimization: 701 states, 1246 transitions
Minimized Truth Table: 781 Rows/Clauses

Synthesize the Rocket in less than 10 minutes with Xilinx toolchain
Memory LUTs go into register files (96%)
Logic LUTs go into system state machine (76%)

Baseline OSEK-V + Static Alarms

Kernel Text Segment (bytes) 14 386 8669 8393
Kernel Data Segment (bytes) 1908 410 354

Lookup Tables (LUT) 29 460 32 041 32 341
Lookup Tables for Memory (Mem-LUT) 1033 2016 2016
Flip-Flops 14 208 14 129 14 196

LUH Application/Hardware - Aware Operating System Design – Evaluation 14 – 1



Simulation in Cycle-Accurate Simulator

w/
o D
isp
atc
h

n=
76

w/
Dis
pa
tch

n=
61

w/
o D
isp
atc
h

n=
26
9

w/
Dis
pa
tch

n=
11

Sta
tic
Ala
rm
s

0

200

400

600

800
n=27

n=1
n=10,≤ 10cyc.

Av
er
ag
e
Ex
ec
ut
io
n
Cy
cl
es

Baseline OSEK-V OSEK-V+Static Alarms

Synchronous System Calls Timer ISR

Synchronous syscalls at least 75% faster

Interrupts are still more expensive, as not mapped to own hardware threads

Static alarms offload timer handling

LUH Application/Hardware - Aware Operating System Design – Evaluation 15 – 1



Outline

Motivation and Introduction

RTOS–Application Interaction Model

The OSEK-V Processor Pipeline

Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design – Conclusion 16 – 1



Conclusion

OSEK-V as a hybrid solution between hardwired control and software
RTOS behavior integrated into processor pipeline
Application logic is updatable to a certain degree

OSEK-V has unique properties as an RTOS platform
Automatic application-specific pipeline derivation
Fast scheduling and thread context switches
Predictable: Operating System has minimal influence on hardware state
Scales with your application: Small systems result in low costs
Easy to verify actual implementation

LUH Application/Hardware - Aware Operating System Design – Conclusion 17 – 1



Simulation in Cycle-Accurate Simulator

Wh
ole

Be
nc
hm
ark Ke

rne
l

Tim
e

0

200

400

·103

Ex
ec
ut
io
n
Cy
cl
es

Baseline OSEK-V OSEK-V+Static Alarms

Wh
ole

Be
nc
hm
ark Ke

rne
l

Tim
e

0

10

20

30

40
·103

Ca
ch
e
St
al
lC
yc
le
s

Execute i4Copter system image in cycle-accurate C++ simulator

IRQs are blocked during system calls and interrupt handling

Average IRQ Blockade drops from 195 cycles to 41 cycles (with static alarms)

LUH Application/Hardware - Aware Operating System Design – 1 – 1


	Introduction and Motivation
	Hardwired Control vs. Control Software
	Between a Rock and a Hard Place
	Our Idea in a Nutshell

	RTOS–Application Interaction Model
	Outline
	System Model: Event-Triggered Real-Time Systems
	System Model: Event-Triggered Real-Time Systems
	Application – Example System
	The System State Machine

	The OSEK-V Processor Pipeline
	Outline
	From the model to the implementation
	From the model to the implementation
	The OSEK-V Pipeline
	The OSEK-V Pipeline

	Evaluation
	Outline
	Evaluation Scenario: Quadrotor Flight Control
	FPGA Synthesis for ZedBoard (Zynq-7020)
	Simulation in Cycle-Accurate Simulator

	Conclusion
	Outline
	Conclusion

	Appendix
	Simulation in Cycle-Accurate Simulator


