Leibniz

Universitat
Hannover

Application/Hardware - Aware Operating System Design

Christian Dietrich, Daniel Lohmann
{dietrich, lohmann}@sra.uni-hannover.de

Leibniz Universitat Hannover
7. February 2018

supported by DI G

Hardwired Control vs. Control Software

Hardwired Control Control Software

+ Low jitter, low latency + Reusable parts: RTOS, libraries
+ No organizational overhead + Useful abstractions: e.g threads
— Always start from scratch + Multiple interacting tasks

Jitter through interference
Overhead by abstractions (RTOS)

Expensive

LUH Application/Hardware - Aware Operating System Design - Introduction and Motivation 2-1

Between a Rock and a Hard Place

Application 1 Application 2

| ! T 2

syscall syscall

LUH Application/Hardware - Aware Operating System Design - Introduction and Motivation 3-1

Our Idea in a Nutshell

executes on

Application [~---------oo-- - - !
Logic (CFG) LRISC !
System e Interaction Model OSEK-V
Configuration (State Machine) Core
Kernel
Semantic

LUH Application/Hardware - Aware Operating System Design - Introduction and Motivation 4-1

. it | Leibniz
O U tl I n e i 0j Z | Universitiit
109:4 || Hannover

Motivation and Introduction
RTOS-Application Interaction Model
The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model 5-1

System Model: Event-Triggered Real-Time Systems

System Model

= Single-core or partitioned RTOS

Event-triggered real-time systems: execution threads, ISRs, etc.
Fixed-priority scheduling semantics
Ahead of time knowledge

— System objects (thread, resources, periodic signals) and their configuration
— Application structure including syscall locations and arguments

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model

System Model: Event-Triggered Real-Time Systems

System Model
= Single-core or partitioned RTOS

= Event-triggered real-time systems: execution threads, ISRs, etc.
= Fixed-priority scheduling semantics
u

Ahead of time knowledge

— System objects (thread, resources, periodic signals) and their configuration
— Application structure including syscall locations and arguments

AUTO SAR
Assumption apply to a wide range of systems: OSEK, AUTOSAR

= |ndustry standard widely employed in the automotive industry
= Static configuration at compile-time

= Fixed-priority scheduling with threads and ISRs

= Stack-based priority ceiling protocol (PCP) for resources

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model

Step 1:

Application - Example System .:,fé

. ke
eV
()
ISR(I1) { s
isr() %
if (cond) K
ActivateTask(T); start iret
iret();
} — & Terminate)
TASK(T) { kickoff Task() idle
kickoff() AT ——{T2 ——(T3
computation(); start
TerminateTask();
}

Extract a finite state machine from the application code
Application FSMs generate system-call "signals" towards the RTOS
Computation code is ignored, since it cannot modify the RTOS state

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model 7-1

The System State Machine

%'?'
L _
idle -g ':/
v
£ '
=S -
SYSTEM { c 2
TASK T { T 2
= <
PRIO = 4; 5|
ACTIVATION = 1; &
} — L
2
ISR I1 { 2
DEVICE = 35;
} | S|
}
Step 2: (LCTES'15, TECS'17)

m Combine system-semantic, system configuration, and app FSMs
m Explicitly enumerate all possible system states
m Every state exposes one currently running thread

LUH Application/Hardware - Aware Operating System Design - RTOS-Application Interaction Model 8-1

1 ¢ 0 [Leibniz
O U tl I n e + 0] 2] Universitit
109:4 || Hannover

Motivation and Introduction
RTOS-Application Interaction Mode
The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline g=1

From the model to the implementation

System-Call Site Number

Next Task
/ /

|
|
= 001 010 , 110 10
¥ 011 116 ' 010 00
'y 011 011 , 000 00
¢ (9 Kickoft(Ty g ——> 001 000 ' 011 01
2 ST
010 01 , 110 10
111 000 ' 000 00
111 010 . 000 00
000 011 ' 110 10
SN
0Old State New State

m Minimize the (deterministic) finite state machine
m Assign state and transition encodings
® Minimize the truth table for hardware implementation

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline 10-1

From the model to the implementation

System-Call Site Number

Next Task
'd_lf i / /

|
|
o - 001 (010 |, 110 16
; 5 911 110 ' 010 00
Termma:e‘lrask[t: 011 011 : 000 00
5y ot 7 g ——> 001 000 ' 011 01
S 2 Bh=l: (b 1
010 001 , 110 10
111 000 ' 000 00
P o e o e
]
i TerminateTask | T2 :
L
-—wewwwwwwww e w o wlew ey E e e W .
Old State New State

m Minimize the (deterministic) finite state machine
m Assign state and transition encodings
® Minimize the truth table for hardware implementation

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline 10-1

=3

The OSEK-V Pipeline

[jfetch |)/ i-decode |)’ execute |)f mem stage \’_{ commit |
hart | PC hart | regs hart |syscall hart | hart | result

J

j-cache

|1e¥

register write back

NPCGen | ' Reg File) System State | 0.1 [Static Alarms
nx PC &— n x 32 Regs Machine .
[T [T 14 [current hart] RTC Tick

T store NPC

select regs

select NPC

m RISC-V and the Rocket Core

= New free and open research ISA (around since 2015)
= Rocket is a 5-stage pipeline implementation written in Chisel
= Multi-core capable, but no hardware multithreading

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline 1M-1

The OSEK-V Pipeline

L i-fetch 3 i-decode 3 execute 3 mem stage ’_) commit
o

2] 4

o

= hart | PC hart | regs hart |syscall hart |) hart | result
register write back

© NPCGen | ' Reg File | System State |, o - [Static Alarms
nx PC &— n x 32 Regs Machine .
[T [T 14 [current hart] RTC Tick

T store NPC

|1e¥

select regs

select NPC

m RISC-V and the Rocket Core

= New free and open research ISA (around since 2015)
= Rocket is a 5-stage pipeline implementation written in Chisel
= Multi-core capable, but no hardware multithreading

Step 4:

= Map every OS thread to one hardware thread

= System-state machine schedules hardware threads

= Execute stage sends system-call number to SSM (osek instruction)

= Component for alarms with constant period and phase (Static Alarms)

LUH Application/Hardware - Aware Operating System Design - The OSEK-V Processor Pipeline 1M-1

1 ¢ 0 [Leibniz
O U tl I n e + 0] 2] Universitit
109:4 || Hannover

Motivation and Introduction
RTOS-Application Interaction Mode
The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design - Evaluation 12-1

Evaluation Scenario: Quadrotor Flight Control

i4Copter
m Realistic safety-critical real-time system
m 11 threads, 3 timers, 1 ISR, 53 system-call sites

m Used only task-setup (no actual compuation code)

dOSEK
m Framework for OSEK system analysis and kernel generator
m Extracts the system state machine for a given application

m Adapts application code to used custom osek instructions

OSEK-V
m CPU Pipeline provides the OSEK kernel functionality
m Generates Verilog code for the Zyng-7020 FPGA (ZedBoard)
m Generates cycle-accurate C++ simulator that runs application

LUH Application/Hardware - Aware Operating System Design - Evaluation 13-1

FPGA Synthesis for ZedBoard (Zyng-7020)

Generate System State Machine in 73.68 s (96 % state encoding)

= Before state-machine minimization: 4834 states, 7479 transitions
m After state-machine minimization: 701 states, 1246 transitions
= Minimized Truth Table: 781 Rows/Clauses

Synthesize the Rocket in less than 10 minutes with Xilinx toolchain

= Memory LUTs go into register files (96 %)
= Logic LUTs go into system state machine (76 %)

Baseline OSEK-V + Static Alarms

Kernel Text Segment (bytes) 14386 8669 8393
Kernel Data Segment (bytes) 1908 410 354
Lookup Tables (LUT) 29460 32041 32341
Lookup Tables for Memory (Mem-LUT) 1033 2016 2016
Flip-Flops 14208 14129 14196

LUH Application/Hardware - Aware Operating System Design - Evaluation A=

Simulation in Cycle-Accurate Simulator

’ B 8 Baseline | © OSEK-V Il B OSEK-V+Static Alarms

8
S 800
<
2 600
>
§ 400
i} n=10, < lOuc
Y 200
o
£ 0
= S
& & & &
N & Q & N
\OQ\“’ §\‘” s Fe Fe i
Q & & &\ (\// AN (,)\,
Synchronous System Calls Timer ISR

m Synchronous syscalls at least 75% faster
B Interrupts are still more expensive, as not mapped to own hardware threads

m Static alarms offload timer handling

LUH Application/Hardware - Aware Operating System Design - Evaluation 15-1

QOutline

Motivation and Introduction
RTOS-Application Interaction Model
The OSEK-V Processor Pipeline
Evaluation

Conclusion

LUH Application/Hardware - Aware Operating System Design - Conclusion

it Leibniz
1 0j 2 Universitit
109:4 || Hannover

. ¢] Leibniz
Conclusion B P

m OSEK-V as a hybrid solution between hardwired control and software

= RTOS behavior integrated into processor pipeline
= Application logic is updatable to a certain degree

m OSEK-V has unique properties as an RTOS platform

Automatic application-specific pipeline derivation

Fast scheduling and thread context switches

Predictable: Operating System has minimal influence on hardware state
Scales with your application: Small systems result in low costs

Easy to verify actual implementation

LUH Application/Hardware - Aware Operating System Design - Conclusion 17-1

Simulation in Cycle-Accurate Simulator

‘llBaseline OSEK-V B B OSEK-V+Static Alarms ‘

108 103
40 n
w 5]
S 400 30 S
O ©
2 =
o 20 S
5 w
s 2% 10 £
& 8
0 0
> >
NN N N &
Q N (9 < Q N\ (9 (9
& é\&% K <& & Q(\(@ K <&
& o)

m Execute i4Copter system image in cycle-accurate C++ simulator
m |RQs are blocked during system calls and interrupt handling
m Average IRQ Blockade drops from 195 cycles to 41 cycles (with static alarms)

LUH Application/Hardware - Aware Operating System Design - 1-1

	Introduction and Motivation
	Hardwired Control vs. Control Software
	Between a Rock and a Hard Place
	Our Idea in a Nutshell

	RTOS–Application Interaction Model
	Outline
	System Model: Event-Triggered Real-Time Systems
	System Model: Event-Triggered Real-Time Systems
	Application – Example System
	The System State Machine

	The OSEK-V Processor Pipeline
	Outline
	From the model to the implementation
	From the model to the implementation
	The OSEK-V Pipeline
	The OSEK-V Pipeline

	Evaluation
	Outline
	Evaluation Scenario: Quadrotor Flight Control
	FPGA Synthesis for ZedBoard (Zynq-7020)
	Simulation in Cycle-Accurate Simulator

	Conclusion
	Outline
	Conclusion

	Appendix
	Simulation in Cycle-Accurate Simulator

