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Hardwired Control vs. Control Software

Hardwired Control

+ Low jitter, low latency
+ No organizational overhead
– Always start from scratch
– Expensive

Control Software

+ Reusable parts: RTOS, libraries
+ Useful abstractions: e.g threads
+ Multiple interacting tasks
– Jitter through interference
– Overhead by abstractions (RTOS)
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Between a Rock and a Hard Place
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Our Idea in a Nutshell
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System Model: Event-Triggered Real-Time Systems

System Model
Single-core or partitioned RTOS
Event-triggered real-time systems: execution threads, ISRs, etc.
Fixed-priority scheduling semantics
Ahead of time knowledge

System objects (thread, resources, periodic signals) and their configuration
Application structure including syscall locations and arguments

Assumption apply to a wide range of systems: OSEK, AUTOSAR
Industry standard widely employed in the automotive industry
Static configuration at compile-time
Fixed-priority scheduling with threads and ISRs
Stack-based priority ceiling protocol (PCP) for resources
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Application – Example System

ISR(I1) {

isr()

if (cond)

ActivateTask(T);

iret();

}

TASK(T) {
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Step 1:

Extract a finite state machine from the application code

Application FSMs generate system-call “signals” towards the RTOS

Computation code is ignored, since it cannot modify the RTOS state
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The System State Machine
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SYSTEM {

TASK T {

PRIO = 4;

ACTIVATION = 1;

}

ISR I1 {

DEVICE = 35;

}

}
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Step 2: (LCTES’15, TECS’17)

Combine system-semantic, system configuration, and app FSMs

Explicitly enumerate all possible system states

Every state exposes one currently running thread
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From the model to the implementation
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Step 3:

Minimize the (deterministic) finite state machine

Assign state and transition encodings

Minimize the truth table for hardware implementation
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The OSEK-V Pipeline
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RISC-V and the Rocket Core
New free and open research ISA (around since 2015)
Rocket is a 5-stage pipeline implementation written in Chisel
Multi-core capable, but no hardware multithreading

Step 4:
Map every OS thread to one hardware thread
System-state machine schedules hardware threads
Execute stage sends system-call number to SSM (osek instruction)
Component for alarms with constant period and phase (Static Alarms)
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Evaluation Scenario: Quadrotor Flight Control

i4Copter

Realistic safety-critical real-time system

11 threads, 3 timers, 1 ISR, 53 system-call sites

Used only task-setup (no actual compuation code)

dOSEK

Framework for OSEK system analysis and kernel generator

dOSEKExtracts the system state machine for a given application

Adapts application code to used custom osek instructions

OSEK-V

CPU Pipeline provides the OSEK kernel functionality

Generates Verilog code for the Zynq-7020 FPGA (ZedBoard)

Generates cycle-accurate C++ simulator that runs application
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FPGA Synthesis for ZedBoard (Zynq-7020)

Generate System State Machine in 73.68 s (96% state encoding)
Before state-machine minimization: 4834 states, 7479 transitions
After state-machine minimization: 701 states, 1246 transitions
Minimized Truth Table: 781 Rows/Clauses

Synthesize the Rocket in less than 10 minutes with Xilinx toolchain
Memory LUTs go into register files (96%)
Logic LUTs go into system state machine (76%)

Baseline OSEK-V + Static Alarms

Kernel Text Segment (bytes) 14 386 8669 8393
Kernel Data Segment (bytes) 1908 410 354

Lookup Tables (LUT) 29 460 32 041 32 341
Lookup Tables for Memory (Mem-LUT) 1033 2016 2016
Flip-Flops 14 208 14 129 14 196
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Simulation in Cycle-Accurate Simulator
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Baseline OSEK-V OSEK-V+Static Alarms

Synchronous System Calls Timer ISR

Synchronous syscalls at least 75% faster

Interrupts are still more expensive, as not mapped to own hardware threads

Static alarms offload timer handling
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Conclusion

OSEK-V as a hybrid solution between hardwired control and software
RTOS behavior integrated into processor pipeline
Application logic is updatable to a certain degree

OSEK-V has unique properties as an RTOS platform
Automatic application-specific pipeline derivation
Fast scheduling and thread context switches
Predictable: Operating System has minimal influence on hardware state
Scales with your application: Small systems result in low costs
Easy to verify actual implementation
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Simulation in Cycle-Accurate Simulator
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Execute i4Copter system image in cycle-accurate C++ simulator

IRQs are blocked during system calls and interrupt handling

Average IRQ Blockade drops from 195 cycles to 41 cycles (with static alarms)
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