

Approximate and stochastic computing: opportunities for processing hardware architectures

Prof. Alberto Garcia-Ortiz Tensilica Day, Hannover 2019

Goal

Opportunities for processing hardware architecturesUsing (imprecise) approximate and stochastic computing

ITEM.IDS

My technology is getting unreliable. What can I do?

My application can tolerate errors. How can I exploit it?

Goal: Make errors first class citizens

3 Imprecise processing

Approximate and stochastic computing: opportunities for processing hardware architectures

- Introduction and motivation
- Approximate processing
- Stochastic processing

Challenges: power crisis

- Low-power = key product differentiator
- Autonomy (energy harvesting, ubiquitous)
- Leakage increasing exponentially
- Thermal issues, including variability
- Packaging cost
 - +8% power, package cost x3
- Reliability
 - +10 °C => +50% failure probability
- Performance drop
 - +10 °C => -3% performance

TZI: Mobile Solutions

Image degradation in VSoC because of +20C temperature increase

- Data centers consume on the order of 1% of all electricity in 2005
- On-chip interconnect power exceeds the total solar energy in 2007 (USA)

Power-aware design

Challenges: production

Increased variability = end of deterministic era

- Random & systematic (lithography, voltage, thermal)
- Variation 30% speed, 20X in leakage

- Yield: design for manufacturability (DFM)
 - Higher defect densities and failure rates
 - Featured limited (style) vs. defect limited (area)
- Mask costs doubling each generation
 - \$0.7M @90nm, \$1.5M @65nm, \$3.0M @45nm

Temperature of a modern processor

Itanium II (1.5 GHz) (Madison processor) J. Stinson, S.Rusu (Intel Corporation) http://videos.dac.com/videos/40th/41/41_3/41_3slides.pdf

Trade-off Energy-Performance-Reliability

Trade-off Energy-Performance-Reliability

Trade-off Energy-Performance-Reliability

Taxonomy: error source

- Approximate processing: Approximate functionality at the functional level is introduced to simplify the hardware implementation

- Can be modeled with Boolean logic
- Stochastic processing: Operation conditions (voltage, frequency,...) do not guaranty an error-free functionality. Additional hardware may be required to correct errors.

Taxonomy: error type

- Small error: The errors are small in magnitude although frequent. Errors are expected to be masked my processing noise.
- Unlikely error: Error are large but appear very small frequently, so that they are expected not to affect the application

Conclusion

Technology

The reliability problem is getting more severe with newer technologies, where guaranteeing proper functionality is getting increasing expensive in terms of energy consumption.

Applications

A new kind of applications requiring a softer trade-off between energy efficiency and robustness is emerging. Current approaches are insufficient to handle this trade-off efficiently..

Types

The two conceptual alternatives are approximate processing and stochastic processing.

Approximate and stochastic computing: opportunities for processing hardware architectures

- Introduction and motivation
- Approximate processing
- Stochastic processing

Overview

- The idea of approximate the logic functionality of a unit is so general that can be equally applied to software and hardware.
- Especially well suited for data intensive applications:
 - DCT/IDCT transformation, motion estimation, CORDIC
- Can be applied at different levels of abstraction:
 - Hardware efficiency improvement in DSP units
 - Functional approximation, number representation
 - Prunning in CNNs, in communication decoders,...

Error metrics

Error metrics quantify the quality of the approximation?

$$\begin{split} PE &= E\left[\delta(\varepsilon)\right] = \sum_{j} \delta(\varepsilon_{j}) Pr[\varepsilon_{j}] ,\\ \sigma &= \sqrt{E\left[(\varepsilon - \mu)^{2}\right]} = \sqrt{\sum_{j} (\varepsilon_{j} - \mu)^{2} Pr[\varepsilon_{j}]} \\ MSE &= E\left[\varepsilon^{2}\right] = \mu^{2} + \sigma^{2} ,\\ MAE &= E\left[|\varepsilon|\right] = \sum_{j} |\varepsilon_{j}| Pr[\varepsilon_{j}] , \end{split}$$

Which one should you use?

Error metrics

Classical error metrics are misleading

$$PE = E\left[\delta(\varepsilon)\right] = \sum_{j} \delta(\varepsilon_{j}) Pr[\varepsilon_{j}] ,$$

$$\sigma = \sqrt{E\left[(\varepsilon - \mu)^{2}\right]} = \sqrt{\sum_{j} (\varepsilon_{j} - \mu)^{2} Pr[\varepsilon_{j}]}$$

$$MSE = E\left[\varepsilon^{2}\right] = \mu^{2} + \sigma^{2} ,$$

$$MAE = E\left[|\varepsilon|\right] = \sum_{j} |\varepsilon_{j}| Pr[\varepsilon_{j}] ,$$

Saturated metric more robust and more fidelity

$$SMSE_{\tau} = E\big[\min(\tau, |\varepsilon|)^2\big]$$

Final error in image application vs metric

Systematic Design of an Approximate Adder: the Optimized Lower-part Constant-OR Adder, Dallo, Najafi, Garcia-Ortz. IEEE VLSI 18

Examples of approximate adders

Small error

- Lower-part OR Adder (LOA)
- Optimal Lower-part Constant-OR Adder (OLOCA)
- Uncommon errors
 - Equally segmented adder (ESA)
 - Generic Accuracy Configurable Adder (GeAr)
 - Error Tolerant Adder (ETA-II)
- Hybrid approaches

LOA

Approximate FA in adder by OR gates

Architecture LOA

Error histogram LOA

OLOCA

Optimize approximation

$$MSE_{T} = \sum_{i=0}^{n_{l}} \hat{\sigma}_{i}^{2} 2^{2i} + \left(\sum_{i=0}^{n_{l}} \hat{\mu}_{i} 2^{i}\right)^{2}$$

	$\hat{\mu}$	$\hat{\sigma}^2$	\hat{MSE}	Â	\hat{D}
AND	-3/4	$^{3/16}$	3/4	1	1
OR	-1/4	$^{3/16}$	1/4	1	1
Buffer	-1/2	1/4	1/2	0	0
Cte-0	-1	1/2	$^{3/2}$	0	0
Cte-1	0	1/2	1/2	0	0

LOA vs. OLOCA

OLOCA is optimal

23 Imprecise processing

ESA and **ETA-II**

ESA: Cut adder in segments to speed carry propagation
ETA-II: Estimate carry using reduce set of bits

Hybrid adder

Combine the two error philosophies...

Architecture hybrid adder

Error histogram hybrid adder

Comparison

Non-trivial search of optimal... CAD tool required to find best architecture!!

ITEM.IDS

26 Imprecise processing

Conclusions

Methodology

- Definition of quality metric for the approximate unit is fundamental.
- CAD tool can synthesize the optimal architecture

Architectures

- There are approaches with different error assumptions
- Best options: OLOCA (for small errors) and hybrid adders (in general)

Approximate and stochastic computing: opportunities for processing hardware architectures

- Introduction and motivation
- Approximate processing
- Stochastic processing

Stochastic processing

Rather than hiding hardware implementation constraints under expensive guardbands, designers can relax the traditional correctness constraints and deliberately expose hardware variability, obtaining significant processing performance improvements and energy benefits.

Typical hardware constraints are those related to the maximum operating frequency (i.e., timing constraints) and power supply (i.e., operating voltage).

Errors in stochastic processing

- Errors appear only when the critical path of the unit is active → very low probability
- When the errors appear, they can have a large magnitude

Optimization

- Reduce the probability of error
- Reduce the impact of the error

Gate level

Redistribute the timing slack during synthesis

- Violated timing paths are identified during a gate-level simulation and are optimized iteratively until an error rate is below a specified threshold. Therefore, the main goal of these techniques is to
- Examples: Blue-shift, Dyna-tune...

RTL level

- Error prediction
 - Telescopic units
- Error detection
 - Razor: Flip-flop with two sampling points

- Minimization of effect of errors with additional hardware
 - Example: Algorithmic Noise Tolerance ANT

ANT

Error probability distributions of M and M_E different
Estimator limits errors of main block

Application to image processing

- Soebel operator
 - Edge detection

 $\begin{array}{lll} G_{x} = \begin{pmatrix} 1 & 0 & -1 \\ a & 0 & -a \\ 1 & 0 & -1 \end{pmatrix} & G_{y} = \begin{pmatrix} 1 & a & 1 \\ 0 & 0 & 0 \\ -1 & -a & -1 \end{pmatrix} \\ a = 2 & & |D_{ij}| = \sqrt{D_{x,a_{ij}}^{2} + D_{y,a_{ij}}^{2}} \\ \approx |D_{x,a_{ij}}| + |D_{y,a_{ij}}| \end{array}$

Architecture with ANT

ANT with approximate adders

Error of ANT using a highresolution approximate adder and low-resolution as a replica

	ANT input		ANT output	
Adder	MSE	PE	MSE	
ESA-4	10.9545	0.4688	7.4330	
ETAII-3	14.9666	0.0547	0.8101	
Hybrid	19.6405	0.2676	0.7539	

Input and output error metrics in ANT

ITEM.ids

Systematic Design of an Approximate Adder: the Optimized Lower-part Constant-OR Adder, Dallo, Najafi, Garcia-Ortz. IEEE VLSI 18

Conclusions

Methodology

- Stochastic approaches need model physical layer and functionality
- Technique can be applied at different levels of abstraction

Architectures

Understand the errors to reduce them!

Conclusions

Imprecise processing:

- Stochastic and approximate technique can reduce dramatically complexity of processing unit
- Make errors first-class citizens

Issues for adoption:

- Need for new methodologies
- Need for new architectures

Approximate and stochastic computing: opportunities for processing hardware architectures

Prof. Alberto Garcia-Ortiz Tensilica Day, Hannover 2019

INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES

MOCAST

EEE

www.ids.uni-bremen.de/mocast2020

11 - 13 May 2020 Bremen, Germany