Matthias Lüders, M. Sc.

Matthias Lüders, M. Sc.
Adresse
Schneiderberg 32
30167 Hannover
Gebäude
Raum
251
Matthias Lüders, M. Sc.
Adresse
Schneiderberg 32
30167 Hannover
Gebäude
Raum
251
  • Publikationsliste

    Zeige Ergebnisse 1 - 4 von 4

    2020


    Multicore performance prediction with MPET: Using scalability characteristics for statistical cross-architecture prediction. / Arndt, Oliver Jakob; Lüders, Matthias; Riggers, Christoph et al.
    in: Journal of Signal Processing Systems, Jahrgang 92, Nr. 9, 09.2020, S. 981-998.

    Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

    Multicore Performance Prediction – Comparing Three Recent Approaches in a Case Study. / Lüders, Matthias; Arndt, Oliver Jakob; Blume, Holger.
    Euro-Par 2019: Parallel Processing Workshops : Euro-Par 2019 International Workshops, Göttingen, Germany, August 26–30, 2019, Revised Selected Papers. Hrsg. / Ulrich Schwardmann; Christian Boehme; Dora B. Heras; Valeria Cardellini; Emmanuel Jeannot; Antonio Salis; Claudio Schifanella; Ravi Reddy Manumachu; Dieter Schwamborn; Laura Ricci; Oh Sangyoon; Thomas Gruber; Laura Antonelli; Stephen L. Scott. Springer Nature, 2020. S. 282-294 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11997 LNCS).

    Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review


    2019


    Statistical Performance Prediction for Multicore Applications Based on Scalability Characteristics. / Arndt, Oliver Jakob; Luders, Matthias; Blume, Holger.
    2019 IEEE 30th International Conference on Application-Specific Systems, Architectures and Processors (ASAP): Proceedings. IEEE Computer Society, 2019. S. 255-262 (Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors).

    Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

    Multicore Performance Prediction -: Comparing Three Recent Approaches in a Case Study. / Lüders, Henrik Matthias; Arndt, Oliver Jakob; Blume, Holger Christoph.
    2019. Beitrag in International Workshop on Algorithms,
    Models and Tools for Parallel Computing on
    Heterogeneous Platforms, Göttingen, Deutschland.

    Publikation: KonferenzbeitragPaperForschung


  • Forschungsprojekte

    Prozessorarchitekturen

    • ZuSE-KI-mobil
      Für Zukunftsaufgaben wie das autonome Fahren oder Industrie 4.0 müssen immer größere Mengen an Daten von einer steigenden Anzahl von Sensoren mit Hilfe komplexer Algorithmen und künstlicher Intelligenz (KI) in kürzester Zeit analysiert werden. Die entsprechenden Prozessoren müssen aber nicht nur bei der Rechenleistung, sondern auch hinsichtlich Energieeffizienz, Zuverlässigkeit, Robustheit und Sicherheit hohe Anforderungen erfüllen, die über aktuelle Möglichkeiten weit hinausgehen. Die ZuSE-Projekte des BMBF sollen den dringenden Bedarf der Anwenderbranchen an zukunftsfähigen, vertrauenswürdigen Prozessoren decken, die auf ihre spezifischen Aufgaben zugeschnitten und hoch performant sind. Ziel des Vorhabens ist die Entwicklung einer Prozessorplattform für die Entwicklung hoch performanter Elektronik für rechenintensive KI-Anwendungen. Als Kernkomponente wird ein KI-Beschleuniger mit einer flexiblen, erweiterbaren und skalierbaren System-on-Chip –Architektur (SoC) entwickelt. Um einen niedrigen Energieverbrauch zu erreichen, wird der Beschleuniger für KI-Algorithmen im Bereich des autonomen Fahrens optimiert und in der energieeffizienten 22-nm-FDX-Halbleitertechnologie gefertigt. Darüber hinaus wird ein Ökosystem aufgebaut, das ein Entwicklungssystem sowie ein deutsches Partnernetzwerk mit Know-how im KI-Hardware-Entwurf vereint. Die Flexibilität und Skalierbarkeit der Leistungsdaten der Prozessorplattform wird anhand von Demonstratoren verifiziert. Der rechenstarke KI-Beschleuniger, die flexible und skalierbare SoC-Architektur sowie das Ökosystem bilden eine Plattform für die kostengünstige Entwicklung anwendungsspezifischer KI-Hardware in Deutschland und sind für zukünftige Innovationen breit einsetzbar.
      Leitung: Prof. Dr.-Ing. Holger Blume
      Team: Matthias Lüders, M.Sc., Martin Friedrich, M.Sc., Sousa Weddige, M.Sc.
      Jahr: 2020
      Förderung: BMBF
      Laufzeit: Mai 2020 - April 2023
    • EcoMobility
      In dem europäischen Projekt "EcoMobility" wird das IMS zusammen mit 46 Partnern aus ganz Europa autonomes Fahren nachhaltiger, intelligenter und sicherer gestalten. Der Fokus des IMS liegt dabei insbesondere auf der intelligenten Planung von Tasks auf heterogenen Prozessorsystemen.
      Leitung: Prof. Dr.-Ing. Holger Blume, M.Sc. Matthias Lüders
      Team: M.Sc. Jonas Hollmann
      Jahr: 2023
      Förderung: KDT JU
      Laufzeit: 2023-2025
      Offizielles Logo von "EcoMobility" Offizielles Logo von "EcoMobility"

    Entwurfsraumexploration

    • KISSKI - KI-Servicezentrum für sensible und kritische Infrastrukturen
      Der zentrale Ansatz in KISSKI ist die Forschung an KI-Methoden und deren Bereitstellung mit dem Ziel ein hochverfügbares KI-Servicezentrum für kritische und sensible Infrastrukturen mit dem Fokus auf die Felder Medizin und Energie zu ermöglichen. Das Fachgebiet Architekturen und Systeme ist hierbei mit einer Entwurfsraumexploration für heterogene Hardwarearchitekturen, insbesondere FPGA-Plattformen, beteiligt.
      Leitung: Prof. Dr.-Ing. Holger Blume
      Team: M. Lüders, J. Drewljau
      Jahr: 2022
      Laufzeit: 2022-2027

    Fahrerassistenzsysteme

    • GreenML
      The project "GreenML" aims to exemplify a holistic AI design process by the highly efficient and resource-optimized implementation of essential FAS functions like object detection, object classification, and scene contextualization on particular hardware. Deep Learning (DL) has become a central approach for modern AI applications. Even though energy-efficient DL has become a target in research, currently isolated solutions are often created that do not unleash the full potential for resource-efficient AI. In this project, we will focus on a holistic approach: from hardware to efficient coding and transfer of data and models to dynamic and resource-adaptive software to enable multi-criteria optimization of all facets of an AI-enabled system. As an example, we demonstrate the potential of this approach using the scenario of a modern driver assistance system (FAS). With about 67 million registered vehicles and increased e-mobility, saving required energy by combining efficient algorithms, communication, and hardware is urgently needed. Our "Green Assisted Driving" project addresses different energy consumption, safety, and flexibility metrics. The consortium combines low-power hardware, learning of efficient representations from large data sets, hyperparameter optimization, and network design using AutoML, as well as methods of transfer learning, semi-supervised learning, and network pruning to prototype highly efficient and dynamically controllable models on a FAS. and demonstrate the savings potential of a holistic approach.
      Leitung: Prof. Dr.-Ing. habil H. Blume
      Team: Matthias Lüders
      Jahr: 2023
      Laufzeit: 2023-2026
    • EcoMobility
      In dem europäischen Projekt "EcoMobility" wird das IMS zusammen mit 46 Partnern aus ganz Europa autonomes Fahren nachhaltiger, intelligenter und sicherer gestalten. Der Fokus des IMS liegt dabei insbesondere auf der intelligenten Planung von Tasks auf heterogenen Prozessorsystemen.
      Leitung: Prof. Dr.-Ing. Holger Blume, M.Sc. Matthias Lüders
      Team: M.Sc. Jonas Hollmann
      Jahr: 2023
      Förderung: KDT JU
      Laufzeit: 2023-2025
      Offizielles Logo von "EcoMobility" Offizielles Logo von "EcoMobility"

    Systementwurf

    • ZuSE-KI-mobil
      Für Zukunftsaufgaben wie das autonome Fahren oder Industrie 4.0 müssen immer größere Mengen an Daten von einer steigenden Anzahl von Sensoren mit Hilfe komplexer Algorithmen und künstlicher Intelligenz (KI) in kürzester Zeit analysiert werden. Die entsprechenden Prozessoren müssen aber nicht nur bei der Rechenleistung, sondern auch hinsichtlich Energieeffizienz, Zuverlässigkeit, Robustheit und Sicherheit hohe Anforderungen erfüllen, die über aktuelle Möglichkeiten weit hinausgehen. Die ZuSE-Projekte des BMBF sollen den dringenden Bedarf der Anwenderbranchen an zukunftsfähigen, vertrauenswürdigen Prozessoren decken, die auf ihre spezifischen Aufgaben zugeschnitten und hoch performant sind. Ziel des Vorhabens ist die Entwicklung einer Prozessorplattform für die Entwicklung hoch performanter Elektronik für rechenintensive KI-Anwendungen. Als Kernkomponente wird ein KI-Beschleuniger mit einer flexiblen, erweiterbaren und skalierbaren System-on-Chip –Architektur (SoC) entwickelt. Um einen niedrigen Energieverbrauch zu erreichen, wird der Beschleuniger für KI-Algorithmen im Bereich des autonomen Fahrens optimiert und in der energieeffizienten 22-nm-FDX-Halbleitertechnologie gefertigt. Darüber hinaus wird ein Ökosystem aufgebaut, das ein Entwicklungssystem sowie ein deutsches Partnernetzwerk mit Know-how im KI-Hardware-Entwurf vereint. Die Flexibilität und Skalierbarkeit der Leistungsdaten der Prozessorplattform wird anhand von Demonstratoren verifiziert. Der rechenstarke KI-Beschleuniger, die flexible und skalierbare SoC-Architektur sowie das Ökosystem bilden eine Plattform für die kostengünstige Entwicklung anwendungsspezifischer KI-Hardware in Deutschland und sind für zukünftige Innovationen breit einsetzbar.
      Leitung: Prof. Dr.-Ing. Holger Blume
      Team: Matthias Lüders, M.Sc., Martin Friedrich, M.Sc., Sousa Weddige, M.Sc.
      Jahr: 2020
      Förderung: BMBF
      Laufzeit: Mai 2020 - April 2023