Design und Evaluation von Hardware-Architekturen zur Stabilisierung verstimmbarer Diodenlaser unter Weltraumbedingungen

verfasst von
Christian Ulrich Spindeldreier
betreut von
Holger Christoph Blume
Abstract

Die Frequenzstabilität von Lichtquellen ist eine grundlegende Voraussetzung für die Erzeugung von Bose-Einstein-Kondensaten, die im Rahmen der MAIUS-2 und MAIUS-3 Höhenforschungsmissionen für quantenmechanische Tests der Universalität des freien Falls genutzt werden. Die Frequenzstabilisierung der verwendeten verstimmbaren Diodenlaser stellt aufgrund der Einschränkungen einer Höhenforschungsrakete sowie der extremen Umwelteinflüsse während des Fluges eine große Herausforderung dar. Insbesondere der vollständig autonome Betrieb sowie die Möglichkeit auch starke Abweichungen von der Sollfrequenz zu kompensieren, lässt sich mit bekannten Frequenzstabilisierungsmethoden unter Wahrung des begrenzten Leistungsbudget nur mit sehr hohem Aufwand realisieren. Hauptziel dieser Arbeit ist daher Umsetzung, Evaluation und experimentelle Demonstration eines neuartigen Ansatzes zur Frequenzstabilisierung von Diodenlasern. Dabei liegt der Fokus auf der Identifikation und Evaluation geeigneter Algorithmen sowie Signalverarbeitungsplattformen unter Berücksichtigung der Leistungsbeschränkung der Nutzlast einer Höhenforschungsrakete. Um die genannten Einschränkungen bekannter Verfahren zu kompensieren, wird eine vollständig digitale Frequenzstabilisierungsmethode vorgeschlagen. Im Kern beruht diese auf der Bestimmung der Laserfrequenz anhand eines kurzen, durch eine lineare Frequenzrampe erzeugten, Spektroskopiesignals, dessen Position im Gesamtspektrum mithilfe von Pattern-Matching-Algorithmen bestimmt wird. Für diese Anwendung werden verschiedene korrelationsbasierte Pattern-Matching-Algorithmen im Zeit- und Fourier-Bereich im Hinblick auf den verbleibenden Frequenzfehler sowie die nötige Ausführungszeit hin untersucht. Letztere muss möglichst gering bleiben, um einen hohen Regeltakt erreichen zu können. Alle betrachteten Algorithmen zeigen dabei eine prinzipielle Eignung, wobei insbesondere die Summe der Absoluten Differenzen (SAD) und die Summer der quadratischen Differenzen (SSD) bei der Evaluation als besonders gut geeignet identifiziert werden. Um ein möglichst kompaktes, leistungseffizientes System zu erhalten, wird ausgehend von diesen Ergebnissen, die Abbildung auf verschiedene, bereits im MAIUS-Projekt verwendete FPGAs und SoC- FPGAs untersucht. Neben der Beschreibung notwendiger Hardware-Module zur Signal-Generation und Extraktion wird dabei die Abbildung der Pattern-Matching-Algorithmen auf den Prozessor eines SoC-FPGAs, zwei Softcores sowie in dedizierte Hardware-Module betrachtet und detailliert evaluiert. Dabei ergibt sich ein Entwurfsraum, der sich über 5 Größenordnungen (60 μs bis 7 s) im Bezug auf die Ausführungszeit und 2 Größenordnungen (150 mW bis 3 W) im Bezug auf die Leistungsaufnahme erstreckt. Die geringste Verlustleistungsaufnahme bei hohen Regeltakten lässt sich mit der aufwendigen Abbildung der SAD in ein dediziertes, skalierbares Hardware-Modul erreichen. Dieses erlaubt abhängig von der Anzahl paralleler Kern-Module einen Regeltakt von bis zu 13 kHz. Mit diesem Modul wird anschließend ein vollständiges FPGA-basiertes Frequenzstabilisierungssystem aufgebaut. Dieses wird für die Demonstration und Evaluation der Pattern-Matching-basierten Laserfrequenzstabilisierungsmethode verwendet. Dabei wird bei der Analyse interner Fehlerwerte eine Frequenzstabilität von 15 MHz (±7,5 MHz) um die Mittenfrequenz von 384,231 THz über eine Beobachtungsdauer von mehr als 3 h erreicht. Dieser Wert wird durch eine Schwebungsmessung mit einem externen Referenzlaser bestätigt. Ausgehend von dem Regeltakt von 95 Hz des Demonstrationssystems ist zu erwarten, dass mit der vorgestellten Methode und mit einem optimierten optischen Aufbau eine noch deutlich höhere Frequenzstabilität im Bereich von bis zu 1 MHz realisierbar ist, wenn der maximal mögliche Regeltakt von bis zu 13 kHz des digitalen Systems ausgenutzt werden kann.

Organisationseinheit(en)
Fachgebiet Architekturen und Systeme
Typ
Dissertation
Anzahl der Seiten
178
Publikationsdatum
2021
Publikationsstatus
Veröffentlicht
Elektronische Version(en)
https://doi.org/10.15488/11020 (Zugang: Offen)